(1/2^2)+(1/3^2)+(1/4^2)+....(1/2011^2). So sanh tong sau voi 1
So sanh A voi 1:
A=1/2*2 + 1/3*3 + 1/4*4 + .....+1/2011*2011
So sanh B voi 3/4:
B=1/2*2 + 1/3*3 +1/4*4 + ......+1/2011*2011
so sanh : 1/2 + 1/2^2 + 1/2^3 + 1/2^2011 voi 1 - 1/2^2010
Tinh tong sau:
N=1^1+2^2+3^3+...+100^100. So sanh N voi 101^102.
Cho tong T=2/2^1+3/2^2+4/2^3 +...+2016/2^2015+2017/2^2016.So sanh T voi 3
so sanh
1/3+1/3^2+1(3^3)+...+1/3^2011+1/3^2012 voi 1/2
Đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\)
\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+......+\frac{1}{3^{2011}}\right)\)\(-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+.....+\frac{1}{3^{2012}}\right)\)
\(\Rightarrow2A=1-\frac{1}{3^{2012}}\)
\(\Rightarrow A=\frac{1-\frac{1}{3^{2012}}}{2}\)
Vì \(1-\frac{1}{3^{2012}}< 1\Rightarrow A< \frac{1}{2}\)
cho S= 2/(2012+1)+2^2/(2012^2+1)+2^3/(2012^2^2+1)+.....+2^(n+1)/(2012^2^n+1)+....+2^2013/(2012^2^2012+1).
So sanh S voi 2/2011
các bạn giải toán nhanh dùm mình với.mình cần gấp
so sanh cac tong sau : (1+2+3+4).(1+2+3+4)va1.1.1+2.2.2+3.3.3+4.4.4
(1+2+3+4)(1+2+3+4)=(1+2+3+4)2
1.1.1+2.2.2+3.3.3+4.4.4
=13+23+33+43
=(1+2+3+4)3
=> (1+2+3+4).(1+2+3+4) < 1.1.1+2.2.2+3.3.3+4.4.4
( 1 + 2 + 3 + 4)( 1 + 2 + 3 + 4) = 10 . 10 = 100
1.1.1 + 2.2.2 + 3.3.3 + 4.4.4 = 1 + 8 + 27 + 64 = 100
VẬy (1 + 2 + 3 + 4)(1 + 2 + 3 + 4) = 1.1.1 + 2.2.2 + 3.3.3 + 4.4.4
so sanh tong s=1/2+2/2^2+......+2015/2^2015 voi 2
Cho tong T=2/2^1+3/2^2+4/2^3 +...+2016/2^2015+2017/2^2016.So sanh T voi 3
ai trả lời được mình tik 3 nick luôn
Ta có :
\(T=\frac{2}{2^1}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{2016}{2^{2015}}+\frac{2017}{2^{2016}}\)
\(T=1+\frac{3}{1.2^2}+\frac{4}{2.2^2}+\frac{5}{2^2.2^2}+...+\frac{2016}{2^{2013}.2^2}+\frac{2017}{2^{1014}.2^2}\)
\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{4}+\frac{6}{8}+...+\frac{2016}{x}+\frac{2017}{x}\right)\)
\(=1+\frac{1}{2^2}.\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2013}}+\frac{2017}{2^{2014}}\right)\)
Đến chỗ này chịu!
Ta có
\(T=1+\frac{3}{1\cdot2^2}+\frac{4}{2\cdot2^2}+...+\frac{2017}{2^2\cdot2^{2014}}\)
\(T=1+\frac{1}{2^2}\cdot\left(3+2+\frac{5}{2^2}+\frac{6}{2^3}+...+\frac{2016}{2^{2014}}+\frac{2017}{2^{2015}}\right)\)