Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
haidaik6a3
Xem chi tiết
TTHN
Xem chi tiết
Nguyễn đức mạnh
Xem chi tiết
Lê Phương Thảo
27 tháng 12 2015 lúc 10:27

Đặt :n^2+2006=a^2(a thuoc Z)

=>2006=a^2-n^2=(a-n)(a+n)       (1)

Mà : (a+n)-(a-n)=2n chia het cho 2 

=>a+n và a-n có cùng ính chẵn lẻ 

TH1:a+n và a-n cùng lẻ =>(a-n)9a+n) lẻ , trái với        (1)

TH2:a+n và a-n cùng chẵn => (a-n)(a+n) chia het cho 4 , trái với     (1)

Vậy ko co n thoa man n^2+2006 la so chinh phuong 

**** 

Đặng Thị Huyền Anh
Xem chi tiết
Trà My
16 tháng 4 2016 lúc 9:31

a, ko có số n thỏa mãn

b, n^2+2006 là hợp số với n là số nguyên tố lớn hơn 3

SKT_ Lạnh _ Lùng
16 tháng 4 2016 lúc 9:31

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

Dương Đức Hiệp
16 tháng 4 2016 lúc 9:40

a)Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006 <==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn ==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.

haidaik6a3
Xem chi tiết
olm
16 tháng 1 2017 lúc 12:49

n=1

n=3

haidaik6a3
Xem chi tiết
đặng viết thái
15 tháng 4 2017 lúc 20:01

ta có:

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0

do 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên 1!+2!+....+n! không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.

Phạm Hà Linh
Xem chi tiết
Phạm Hà Linh
2 tháng 4 2021 lúc 23:23

help me

Khách vãng lai đã xóa
Mimi White
Xem chi tiết
Dinh Van Hao
12 tháng 11 2019 lúc 19:39

Gọi n2 + 2006 = a[ a thuộc N]

=> 2006 = a- n2 = [ a - n ] . [ a + n ][ 1 ]

Mà [ a + n ] - [ a - n ] = 2n chia hết cho 2

=> a + n và a - n có chung tính chẵn lẻ 

a + n và a - n cùng lẻ => [ a-n ] . [ a + n ] lẻ trái với [ 1 ]

a + n và a - n cùng chẵn => [ a - n ] . [ a + n ] chia hết cho 4 mà 2006 không chia hết cho 4 

Vậy không có n thỏa mãn để n2 + 2006 là số chính phương

Chúc bạn học tốt 

Mình chỉ biết làm thê thôi , nếu sai mong mọi người bỏ qua cho

Khách vãng lai đã xóa
Trang Hoang
Xem chi tiết
Trịnh Quang Hùng
14 tháng 9 2015 lúc 18:09

Có phải bài này là điều kiện đồng thời đúng không??

Ta nhận thấy n phải là số tự nhiên 

Giống như bài dưới ta cũng sử dụng tính chất của số chính phương 

Một số chính phương chia 4 chỉ dư 0 hoặc 1

Tự chứng minh.........

Với n>1 ta có 2n chia hết cho 4 mà 15 chia 4 dư 3 nên 2n+15 chia 4 dư 3 không là số chính phương

Vậy n=0 hoăc n=1 ta thấy n=0 thỏa mãn cả hai cái

Vậy n=0 để ......