Chung minh rang: C=5+52+53+54+...+58 chia het cho 30
Chung minh rang : 5 + 52 + 53 + ... + 58 la boi cua 30
Chứng minh rằng C = 5 + 5 2 + 5 3 + ... + 5 8 chia hết cho 30
Sơ đồ con đường |
Lời giải chi tiết |
|
Ta có: C = 5 + 5 2 + 5 3 + ... + 5 8 = 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + 5 7 + 5 8 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 5 + 5 2 + 5 4 5 + 5 2 + 5 6 5 + 5 2 = 30 + 5 2 .30 + 5 4 .30 + 5 6 .30 = 30. 1 + 5 2 + 5 4 + 5 6 Áp dụng tính chất chia hết của một tích ta có: 30 ⋮ 30 ⇒ 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 ⇒ C = 30. 1 + 5 2 + 5 4 + 5 6 ⋮ 30 |
Chứng minh rằng C = 5 + 5 2 + 5 3 + . . . + 5 8 chia hết cho 30
chung minh rang 53 mu 103 cong 103 mu 53 chia het cho 39
chung minh rang
10^28 + 8 chia het cho 72
53! - 51! chia het cho 29
Ta viết 10^28=10000......0
Vì 10^28 chia hết cho 8 ; 8 chia hết cho 8 =>10^28+8 chia hết cho 8
Vì 10^28 có tổng các chữ số là 1 ; 8 có tổng các chữ số là 8 =>10^28+8 sẽ có tổng các chữ số là 9=>10^28+8 chia hết cho 9
Mà các số vừa chia hết cho 9;8 thì chia hết cho 72=>10^28+8 chia hết cho 72
chung minh rang n^5-n chia het cho 30
chung minh rang: a^5-a chia het cho 30
A = a^5 - a = a(a²-1)(a²+1) = a(a-1)(a+1)(a²+1)
* (a-1)a(a+1) là tích của 3 số nguyên liên tiếp nên chia hết cho 6
* Đặt a = 5k + r ( với 0 ≤ r ≤ 4)
nếu r = 0, 1, 4 thì n hoặc (a - 1) hoặc (a + 1) chia hết cho 5
xét r = 2 hoặc 3
a²+1 = (5k+r)² + 1 = 25k²+10k + r²+1 chia hết cho 5 khi r = 2 hoặc r = 3
tóm lại A chia hết cho 5
Vì (6,5) = 1, A chía hết cho 6 và 5 nên A chia hết cho 30
t i c k nha!!!!!!! 45667678978902313243253454365476586587688768765435346
chung minh rang 30-5.n chia het cho n-5
chung minh rang :
s= 5+5^2+5^3+...........+5^99+5^100 chia het cho 30
S= 5+5^2+5^3+...........+5^99+5^100
=(5+52)+(53+54)+....+(599+5100)2
=1.(5+52)+(5.52+52.52)+...+(598.5+592.52)
=1.(5+52)+52.(5+52)+...+598.(5+52)
=1.30+52.30+...+598.30
=30.(1+52+...+598)
=>S chia het cho 30