Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quản Xuân Sơn
Xem chi tiết
Nam Dốt Toán
Xem chi tiết
Phạm Huy Hoàng
Xem chi tiết
Lovely Sweetheart Prince...
Xem chi tiết
Đức Nguyễn Ngọc
18 tháng 4 2016 lúc 9:57

x=1; y=1

buikhanhphuong
Xem chi tiết
Jin Air
29 tháng 7 2016 lúc 15:20

Bạn có thể tham khảo cách của mình:

Do vai trò bình đẳng của x,y nên ta có thể giả sử x>= y

-TH x=y:

x+1 chia hết cho y

<=> y+1 chia hết cho y

=> y thuộc ước của 1. Mà y thuộc N nên y=1. Do đó ta có x=1 (vì x=y)

Ta có cặp so (x;y)=(1;1)

-TH x>y:

Giả sử x-y=k (k thuộc N* vì x,y là số tự nhiên, x>y). Suy ra y=x-k

Thay vào ta có: y+1 chia hết cho x

                 <=> x-k+1 chia hết cho x

                 Do x>k nên x-k+1 > 0, x là số tự nhiên, x-k+1 chia hết cho x

                 <=> 1-k =0 hoặc >0

+Nếu 1-k=0 thì k=1

Thay vào ta có: x+1 chia hết cho y

                  <=>1+y+1 chia hết cho y <=> y + 2 chia hết cho y. Suy ra y thuộc ước của 2

=> y={1;2}. Vậy x={2;3} tương ứng.

Ta có cặp số x;y=(1;2);(2;3)

+Nếu 1-k>0:

Do k thuộc N* nên 1-k>0 là vô lý

Kết luận: Các cặp số (x;y) phải tìm: (1;1);(1;2);(2;1);(2;3);(3;2)

Tuổi trẻ tài cao
28 tháng 7 2016 lúc 15:47

Vì vai trò của x, y bình đẳng nên có thể giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Có ⎧⎨⎩x+1⋮yy+1⋮x{x+1⋮yy+1⋮x

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2).

Linh Nguyễn
29 tháng 7 2016 lúc 8:38

 giả sử x≤yx≤y.

- Nếu x = 1 thì x+1=2⋮yx+1=2⋮y ⇒y=1⇒y=1 hoặc 2 ⇒(x,y)=(1,1),(1,2)⇒(x,y)=(1,1),(1,2).

- Nếu x≥2x≥2 thì 2≤x≤y2≤x≤y

Theo đề bài,

⇒(x+1)(y+1)=(xy+x+y+1)⋮xy⇒(x+1)(y+1)=(xy+x+y+1)⋮xy ⇒(x+y+1)⋮xy⇒(x+y+1)⋮xy

⇒x+y+1xy=1x+1y+1xy⇒x+y+1xy=1x+1y+1xy là số nguyên dương.

Mà 2≤x≤y2≤x≤y nên 1x+1y+1xy≤12+12+14=541x+1y+1xy≤12+12+14=54

Từ đó suy ra 1x+1y+1xy=11x+1y+1xy=1 (1)

⇒1=1x+1y+1xy≤1x+1x+12x=52x⇒1=1x+1y+1xy≤1x+1x+12x=52x ⇒2x≤5⇒2x≤5 ⇒⇒ x = 2

Thay vào (1) ta có 12+1y+12y=112+1y+12y=1 ⇒y=3⇒y=3

Vậy các cặp số (x, y) phải tìm là (1, 1), (1, 2), (2, 1), (2, 3), (3, 2

phamphuckhoinguyen
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Nguyễn tuấn nghĩa
Xem chi tiết
Lê Cẩm Anh
Xem chi tiết