Chứng minh rằng nếu 3 số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Chứng minh rằng nếu ba số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3, thì k chia hết cho 6
Do a, a + k, a + 2k đều là nguyên tố lớn hơn 3 nên đều là số lẻ và không chia hết cho 3.
• Vì a và a + k cùng lẻ nên a + k - a = k ⋮ 2. (1)
• Vì a, a + k, a + 2k đều không chia hết cho 3 nên khi chia cho 3 ít nhất hai số có cùng số dư, khi đó:
+ Nếu a và a + k có cùng số dư, thì suy ra: (a+k) - a = k ⋮ 3
+ Nếu a + k và a + 2k có cùng số dư, thì suy ra: (a+2k )- (a+k)= k ⋮ 3+ Nếu a và a + 2k có cùng số dư, thì suy ra:
( a + 2k ) - a = 2k 3 nhưng (2,3) = 1 nên k 3
Vậy, ta luôn có k chia hết cho 3 (2)
Từ (1),(2) và do (2,3)=1 ta suy ra k ⋮ 6, đpcm.
Nhận xét: Trong lời giải trên, ta đã định hướng được rằng để chứng minh k ⋮ 6 thì cần chứng minh k ⋮ 2 và k ⋮ 3 và ở đó:
• Việc chứng minh k ⋮ 2 được đánh giá thông qua nhận định a, a + k,a + 2k đều là nguyên tố lẻ hơn kém nhau k đơn vị.
• Việc chứng minh k ⋮ 3 được đánh giá thông qua nhận định “ba số lẻ không chia hết cho 3 thì có ít nhất hai số có cùng số dư” và như vậy hiệu của hai số đó sẽ chia hết cho 3.
Bạn cao minh tâm ghi là "2k 3" và "k 3" có nghĩa là gì
Chứng minh rằng nếu có 3 số a , a+k , a+2k đều là số nguyên tố lớn hơn 3 thì k chia hết cho 6
Chứng minh rằng nếu 3 số a, a+k, a+2k đều là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.
Mà số chẵn lớn hơn 3 thì chia hết cho 2 ⇒ không là số nguyên tố.
Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $\Rightarrow$⇒ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 ⇒ k chia hết cho tích (2 . 3)
$\Rightarrow$⇒ k chia hết cho 6 (đpcm).
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.
Mà số chẵn lớn hơn 3 thì chia hết cho 2 $⇒$⇒ không là số nguyên tố.
Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 $$ Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 $⇒$⇒ k chia hết cho tích (2 . 3)
$$ k chia hết cho 6 (đpcm).
Chứng minh rằng nếu có 3 số a , a+k , a+2k đều là số nguyên tố lớn hơn 3 thì k chia hết cho 6
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
Chứng minh rằng nếu 3 số a , a+k , a+2k đều là các số nguyên tố lớn hơn 3 thì k chia hết cho 6 ???
Cô Loan giúp em đi:
Chứng minh rằng nếu 3 số a,a+k và a+2k đều là các số nguyên tố lớn hơn 3,thì k chia hết cho 6
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ.
Mà số chẵn lớn hơn 3 thì chia hết cho 2 \(\Rightarrow\) không là số nguyên tố.
Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 \(\Rightarrow\) Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3 (vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
- Nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
- Nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 \(\Rightarrow\) k chia hết cho tích (2 . 3)
\(\Rightarrow\) k chia hết cho 6 (đpcm).
chứng minh rằng nếu ba số a, a + k và a + 2k đều là các số nguyên tố lớn hơn 3 , thì k chia hết cho 6
( trình bày cách làm luôn nha )
Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
-vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3
-nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư
2.
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
⋮" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
2∈" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
N*)∈" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
N*)⋮" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
3⋮" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; overflow-wrap:normal; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal" class="MathJax_CHTML mjx-chtml">
6vì 2k luôn là số chẵn nếu k là số lẻ thì trong 2 số a+k và a +2k sẽ có 1 số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2=>ko là số nguyên tố . Vậy k phải là số chẵn (chia hết cho 2)
k phải chia hết cho 3 vì nếu k chia cho3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoăc 1=> trong 3 số a,a+k và a+ 2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
vì nếu a chia hết cho 3 thì trong 3 số đó , số đầu tiên là a chia hết cho 3
nếu a chia 3 dư 1 thì a+k hoặc a+2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia 3 dư 1 và số kia chia 3 dư 2
nếu a chia 3 dư 2 thì a+k hoặc a+2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia 3 dư 1 và số kia chia 3 dư 2
vậy k chia hết cho 2 và cho 3 => k chia hết cho 6
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
a,Do p là số nguyên tố >3=>p2=3k+1 =>p2-1 chi hết cho 3
Tương tự, ta được q2-1 chia hết cho 3
Suy ra: p2-q2 chia hết cho 3(1)
Do p là số nguyên tố lớn hơn 3 nên p-1 và p+1 là 2 số chẵn liên tiếp=>(p-1)(p+1) chia hết cho 8<=>p2-1 chia hết cho 8
Do q là số nguyên tố lớn hơn 3 nên q-1 và q+1 là 2 số chẵn liên tiếp=>(q-1)(q+1) chia hết cho 8<=>q2-1 chia hết cho 8
Suy ra :p2-q2 chia hết cho 8(2)
Từ (1) và (2) suy ra p^2-q^2 chia hết cho BCNN(8;3)<=> p^2-q^2 chia hết cho 24
Chứng minh rằng:
a/ Nếu p và q là 2 số nguyên tố lớn hơn 3 thì p2 - q2 chia hết cho 24.
b/ Nếu a, a+k, a + 2k ( a, k thuộc N*) là các số nguyên tố lớn hơn 3 thì k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.
a) Số nguyên tố lớn hơn 3 thì không chia hết cho 8, 4 và cho 2. Một số chia cho 8 dư 0, 1, 2,3, 4, 5, 6,7 => Nếu số là nguyên tố lớn hơn 3 thì khi chia cho 8 phải dư 1 hoặc 3 hoặc 5 hoặc 7 (vì nếu số đó chia 8 dư 2 thì nó viết dạng 8k + 2 chia hết cho 2, tương tự vậy không thể chia cho 8 dư 4 và dư 6)=> Số nguyên tố bình phương lên chia cho 8 dư 1 (vì 12 chia 8 dư 1, 32 =9 chia 8 dư 1, 52 =25 chia 8 dư 1, 72 = 49 chia 8 dư 1).
Vậy cả p2 và q2 chia 8 đều dư 1 => Hiệu p2 - q2 chia hết cho 8 (vì trừ cho nhau phần dư sẽ triệt tiêu).
Tương tự vậy, số nguyên tố lớn hơn 3 thì khi chia cho 3 phải dư 1 hoặc dư 2 => Bình phương số đó khi chia cho 3 dư 1 ( vì 12 = 1 chia 3 dư 1; 22 =4 chia 3 dư 1) => p2 và q2 chia cho 3 đều dư 1 => Hiệu p2 - q2 chia hết cho 3 (phần dư 1 sẽ triệt tiêu đối với phép trừ)
=> p2 - q2 chia hết cho cả 8 và 3, mà 8 và 3 là hai số nguyên tố cùng nhau => p2 - q2 chia hết cho 8x3 =24
b) Vì 2k luôn là số chẵn nên nếu k là số lẻ thì trong hai số a + k và a + 2k sẽ có một số chẵn và 1 số lẻ. Mà số chẵn lớn hơn 3 thì chia hết cho 2 => Không là số nguyên tố. Vậy k phải là số chẵn (tức là k chia hết cho 2).
Lý luận tương tự, k phải chia hết cho 3, vì nếu k chia 3 dư 1 hoặc 2 thì 2k chia cho 3 dư 2 hoặc 1 => Trong 3 số a, a +k, a +2k khi chia cho 3 chắc chắn có 1 số chia hết cho 3
(vì nếu a chia hết cho 3 thì trong 3 số đó, số đầu tiên là a chia hết cho 3;
nếu a chia 3 dư 1 thì a + k hoặc a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2
nếu a chia 3 dư 2 thì a + k và a + 2k phải có 1 số chia hết cho 3 vì trong 2 số k và 2k có 1 số chia cho 3 dư 1 và số kia chia cho 3 dư 2).
Vậy k chia hết cho 2 và cho 3 => k chia hết cho 6.