CMR Tim n de A=(n+5)(n+6) chia het cho 6n
Tim n la so tu nhien de :
A=(n+5)(n+6) chia het cho 6n
(n+5)(n+6) : 6n = 1/6 ( n + 11 + 30/n ) để chia hết thì n là ước của 30 và n + 11+ 30/n chia hết cho 6
vậy
n = 1, 3 ,10 , 30
tim n la so tu nhien de A=(n+5)(n+6) chia het cho 6n
tim so tu nhien n de (n+5)(n+6)chia het cho 6n
1.chung minh rang:3n.(n+1)chia het cho 6(n thuoc N
2.cmr 5n.(n+1).(n+2) chia het cho 30(n thuocN)
3.tim so tu nhien n de 7.(n-1) chia het cho 4
4.tim so tu nhien n de 5.( n-2) chia het cho 3
Tim n thuoc N de :
a,n+9 chia het n-2
b,2n+7 chia het n+1
c,6n+5 chia het 2n-1
CMR A=(n+5)(n+6) chia het cho 6n
n^2+5n=(n^2-n)+6n do đó ta cần chỉ ra khi nào n^2-n chia hết cho 6 . Ta có : n^2-n=n.(n-1) . Đây là tích hai số tự nhiên liên tiếp nên chia hết cho 2 . Để tích này chia hết cho 6 thì nó cần chia hết cho 3. Do 3 là số nguyên tố nên một trong hai số n và n-1 chia hết cho 3. Ta suy ra n có dạng 3k hoặc 3k+1 . Thử lại thấy đúng .
Vậy chỉ khi n có dạng 3k hoặc 3k+1 thì bài toán được nghiệm đúng . Trường hợp n=2 là dạng 3k+2
Điều đó không xảy ra khi (n;5)=1;(n;6)=1
tim so nguyen n de
2n + 1 chia het cho n - 3
6n + 4 chia het cho 2n + 1
2n + 1 chia hết cho n - 3
Ta có: 2n + 1 = 2( n - 3) + 7
Để 2n +1 chia hết cho n -3 thì 7 chia hết cho n - 3
=> n - 3 thuộc Ư(7) = { 1;-1;7;-7 }
=> n thuộc { 4;3;10;-4 }
6n+4 chia hết cho 2n+1
Ta có: 6n+4=3(2n+1)+1
Để 6n+4 chia hết cho 2n+1 thì 1 chia hết cho 2n + 1
=> 2n+1 thuộc Ư( 1)={1;-1}
=> n thuộc {0; -1}
tim so nguyen n de
2n + 1 chia het cho n - 3
6n + 4 chia het cho 2n + 1
Ta có 2n+1=2(n-3)+7
=> 7 chia hết cho n-3
n nguyên => n-3 nguyên => n-3\(\inƯ\left(7\right)=\left\{-7;-1;1;7\right\}\)
Ta có bảng
n-3 | -7 | -1 | 1 | 7 |
n | -4 | 2 | 4 | 10 |
*) Ta có 6n+4=3(2n+1)+1
=> 1 chia hết cho 2n+1
n nguyên => 2n+1 nguyên => 2n+1 \(\inƯ\left(1\right)=\left\{-1;1\right\}\)
Nếu 2n+1=-1 => 2n=-2 => n=-1
Nếu 2n+1=1 => 2n=0 => n=0
2n + 1 chia hết cho n - 3
2n + 1 = 2n - 6 + 7 = 2(n - 3) + 7
Vì 2n + 1 chia hết cho n - 3 và 2(n - 3) chia hết cho n - 3
=> 7 chia hết cho n - 3
=> n - 3 là ước nguyên của 7
Ta có bảng sau :
n - 3 | 1 | 7 | -1 | -7 |
n | 4 | 10 | 2 | -4 |
b. 6n + 4 chia hết cho 2n + 1
6n + 4 = 6n + 3 + 1 = 3(2n + 1) + 1
Vì 6n + 4 chia hết cho 2n + 1 và 3(2n + 1) chia hết cho 2n + 1
=> 1 chia hết cho 2n + 1
=> 2n + 1 là ước nguyên của 1
Ta có bảng sau:
2n + 1 | 1 | -1 |
n | 0 | -1 |
Chúc bạn học tốt!
so tu nhien n lon nhat nhat de (n+5)(n+6)chia het cho 6n