cho m > n chứng minh :
a, m + 2 > n + 2 ;
b, 2m - 5 > 2n - 5
c, -2m < - 2n
d, 4 - 3m < 4 - 3n
a/ cho a+2>5 chứng minh a>3
b/ cho a>3 chứng minh a+2>5
c/ chứng tỏ m>n thì m-n>0
d/ chứng tỏ m-n>0 thì m>n
e/ cho m<n chứng minh m-5<n-4
a vì a+2>5 =>a+2+(-2)>5+(-2)=>a+2>3
b vì a>3 => a+2>3+2 =>a+2>5
c vì m>n =>m-n>n-n=>m-n>0
đ vì m-n=0 =>m-n+n>0+n=>m>n
e vì m<n nên m+(-4)<n+(-4) =>m-4<n-4 (1)
vì -4>-5 => m-4>m-5 (2)
từ (1) và (2) =>m-5<n-4
Cho m > n, chứng minh:
a) m + 2017 > n + 2016 b) n - 1 < m + 2
Cho m > n, chứng minh:
a) 2019 - n > 2018-m; b) -1 - m < -n + 2.
1.Cho \(n\inℕ^∗\)và a,b dương , chứng minh:
\(\frac{1}{a^n}+\frac{1}{b^n}\ge\frac{2^{n+1}}{\left(a+b\right)^n}\)
2.Cho m,n dương , chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
3.Cho m,n,p là các số dương, chứng minh:
\(\frac{a^2}{m}+\frac{b^2}{n}+\frac{c^2}{p}\ge\frac{\left(a+b+c\right)^2}{m+n+p}\)
Giúp mình với mn ơi!!
Bài này bạn chỉ cần chuyển vế biến đổi thôi là được , mình làm mẫu câu 2) :
\(\frac{a^2}{m}+\frac{b^2}{n}\ge\frac{\left(a+b\right)^2}{m+n}\)
\(\Leftrightarrow\frac{a^2n+b^2m}{mn}-\frac{\left(a+b\right)^2}{m+n}\ge0\)
\(\Leftrightarrow\frac{\left(m+n\right)\left(a^2n+b^2m\right)-\left(a^2+2ab+b^2\right).mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{a^2mn+\left(bm\right)^2+\left(an\right)^2+b^2mn-a^2mn-2abmn-b^2mn}{mn\left(m+n\right)}\ge0\)
\(\Leftrightarrow\frac{\left(bm-an\right)^2}{mn\left(m+n\right)}\ge0\) ( luôn đúng )
Dấu "=" xảy ra \(\Leftrightarrow bm=an\)
Câu 3) áp dụng câu 2) để chứng minh dễ dàng hơn, ghép cặp 2 .
Cho m= abba.Tìm m
a) m không chia hết cho 2; m chia 5 dư 3 và ab+ba=99
b) m chia hết cho 2; m chia 5 dư 3 và b-a chia hết cho 5
bài 2
a) Chứng minh rằng với mọi số tự nhiên n thuộc N thì (n+4).(n+9) chia hết cho 2
b) Chứng minh rằng abba chia hết cho 11
Cho M=\(n^1+n^2+n^3+..+n^{100}\left(n\in N\right)\)
a) Chứng minh: M chia hết cho (n+1)
b) Chứng minh: M chia hết cho n(n+1)
1) Cho a>b. Chứng minh a+1+2+3+... +9+10>b+54
2) Cho m≤n. Chứng minh m+1+3+5+... +23+25≤n+169
cho m>n>0 và gọi a=m^2+n^2; b=m^2-n^2; c=2*m-n. chứng minh a,b,c là độ dài 3 cạnh của tam giác vuông
a2 = (m2 + n2)2 = m4 + 2m2.n2 + n4
b2 = (m2 - n2)2 = m4 - 2m2.n2 + n4
c2 = (2mn)2 = 4m2.n2
Nhận xét: a2 - b2 = c2 => a2 = b2 + c2
Theo ĐL pi - ta - go đảo => a; b; c là độ dài 3 cạnh của 1 tam giác vuông
1. Cho a,b dương. Chứng minh: \(a^{m+n}+b^{m+n}\ge\frac{1}{2}\left(a^m+b^m\right)\)
2. Cho a,b dương. Chứng minh \(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\ge\sqrt{ab}+\frac{a+b}{2}\)
Chứng minh rằng:
A=405^n+2^405+m^2(m,n thuộc N;n khác 0) không chia hết cho 10
Ta có : 405^n + 2^405 + m^2 = (.......5) + 2^404. 2 + m^2 = (.........5)+ (........6).2 + m^2 = (......5)+(......2)+m^2
= (......7) + m^2
Để A chia hết cho 10 => m^2 phải có c/s tận cùng là 3 mà số chính phương ko có c/s tận cùng là 3
Vậy A ko chia hết cho 10
tick nha bạn !