Cho tam giác ABC cân tại A có góc A=20o.Trên AB lấy D sao cho góc BDC=30o.CMR:AD=
BC
Cho tam giác ABC cân tại A , góc A = 20 . Trên cạnh AB lấy điểm D sao cho AD = BC . Tính số đo góc BDC.
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Trong tam giác ABC lấy điểm M sao cho tam giác BMC đều
=> BM=CM => M thuộc trung trực cua BC
Lại có : AB=AC(ABC can tai A)
=> A thuộc trung trực cua BC
Do đó : AM là trung trực của BC
=> AM là phân giác góc BAC
=> góc MAB = góc MAC = góc BAC /2 = 20 độ/2=10 độ
tam giac ABC can tai A
=> goc CBA = goc BCA = (180 - goc BAC)/2= (180 - 20)/2 = 80 độ
lai co : goc MCA = goc ACB - goc MCB
goc MCB = 60 độ (Tg BCM đều)
Suy ra : goc MCA = 20 độ
Xet tg CMA va tg ADC co:
AC chung
CM=DA (cung bang BC)
goc MCA = goc DAC (= 20 độ)
=> tg CMA = tg ADC ( c.g.c)
=> goc CDA = goc CMA = 150 độ
Mat khac : goc CDA + goc BDC = 180 độ (2 goc ke bu)
suy ra : goc BDC = 30 độ
Cho tam giác ABC vuông tại A có B ^ = 60 ° . Trên cạnh BC lấy điểm H sao cho HB = AB. Đường thẳng vuông góc với BC tại H cắt AC tại D. Chứng minh:
a) BD là tia phân giác của A B C ^ ;
b) tam giác BDC cân.
cho tam giác ABC có góc A=90 độ.Trong góc ABC cẽ tia BC mà góc COx=2ABx.Trên tia BC lấy D sao cho ID=BC (Bx giao AC tại I ). Trên tia DB lấy E sao cho DE=BI. CMR tam giác BEC,CIE,BDC cân
Cho tam giác ABC cân tại A có góc A = 20 độ. Trên cạnh AB lấy điểm D sao cho AD = BC. Tính góc BDC.
( Gợi ý: Trên nửa mặt phẳng có bờ AB chứa điểm C vẽ thêm tam giác đều AIB
Cho tam giác ABC vuông ở A có góc B = 60 độ. Trên cạnh BC lấy điểm H sao cho HB = AB. Đường thẳng vuông góc với BC tại H cắt AC tại D. Chứng minh rằng:
a) BD là tia phân giác của góc ABC.
b) Tam giác BDC là tam giác cân.
Giúp mình với nhé. Mình cảm ơn ạ
a, Xét ΔDHB và ΔDAB ta có:
HB = AB
DB chung
=> ΔDHB = ΔDAB ( cạnh huyền - cạnh góc vuông)
=> =
=> BD là tia phân giác
b, BD là tia phân giác
=> = 30
ΔABC vuông tại A có = 60
=> = 30
Xét ΔDCH và ΔDBA ta có:
= ( =30)
DH = DA ( do ΔDHA = ΔDAB chứng minh câu a)
=> ΔDCH = ΔDBA ( cạnh huyền - góc nhọn)
=> DC = DB
=> ΔBDC cân tại D
a/ Xét tg vuông ABD và tg vuông HBD có
BD chung; HB=AB (gt) => tg ABD = tg HBD (2 tg vuông có cạnh huyền và cạnh góc vuông tương ứng bằng nhau)
\(\Rightarrow\widehat{ABD}=\widehat{HBD}\) => BD là phân giác \(\widehat{ABC}\)
b/
Xét tg vuông ABC có
\(\Rightarrow\widehat{ACB}=90^o-\widehat{ABC}=90^o-60^o=30^o\)
\(\Rightarrow AB=\frac{BC}{2}\) (trong tg vuông cạnh đối diện với góc 30 độ bằng nửa cạnh huyền) (1)
Ta có HB=AB (gt) (2)
Từ (1) và (2) \(\Rightarrow HB=\frac{BC}{2}\) => H là trung điểm của BC => DH là trung tuyến thuộc BC
Mà \(DH\perp BC\) => DH là đường cao của tg BDC
=> tg BDC cân tại D (Trong tg nếu đường cao đồng thời là đường trung tuyến thì tg đó là tg cân)
cho tam giác ABC cân tại A, góc A = 20 độ. trên AB lấy D sao cho góc BDC = 30 độ. Chứng minh AD=BC.
cho tam giác vuông ABC vuông tại A, đường cao AH. Gọi K,I,J lần lượt là giao điểm của ba đường phân giác ABC, AHB, AHC. Chứng minh AK vuông góc IJ
Bài 1: cho tam giác ABC cân tại A có góc A= 20 độ. Trên AB láy M sao cho AM=BC. Tính góc AMC (gợi ý: vẽ tam giác BDC đều nằm trong tam giác ABC)
bài 2: cho tg ABC cân tại A. góc A=40 độ. kẻ AH vuông với BC. lấy E và F thuộc AH và AC sao cho góc ABC = góc FBC = 30 độ. Tính góc AEF
bài 3:cho tg ABC có góc B= góc C=45 độ. điểm E nằm trong tg ABC sao cho góc EAC= góc ECA= 15 độ. Tính góc BEA.
cho tam giác abc vuông cân tại a .trên nửa mf bờ bc ko chứa điểm a lấy d sao cho góc bdc = 90 độ. cm da là pg của góc bdc
cho tam giác ABC cân tại A có BC=2a, M là trung điểm của BC. lấy D,E thuộc AB,AC sao cho cho góc DME= góc B
a)CMR DB*CE không đổi
b)CMR DM là tia phân giác của góc BDC
c)tính chu vi của tam giac AED nếu tam giác ABC đều