Chứng minh rằng trong n+1 STN bất kì luôn có thể tìm đc 2 số cs hiệu của chúng chia hết cho n
Chứng minh rằng trong n+1 stn bất kỳ có thể tìm đc hai số có hiệu của chũng chia hết cho n
Bài toán 1. Chứng mình rằng:
a) Trong 2012 số tự nhiên bất kì luôn tìm được hai số chia cho 2011 có cùng số dư
(hay hiệu của chúng chia hết cho 2011).
b) Trong 2012 sô tự nhiên bất kì luôn tìm được một số chia hết cho 2012 hoặc luôn
tìm được hai số chia cho 2012 có cùng số dư.
Giúp mk vs, mk đang caand gấp
Chứng minh rằng: trong n+1 số tự nhiên bất kỳ có thể tìm được hai số có hiệu của chúng chia hết cho n
chứng minh rằng trong 6 số tự nhiên bất kì luôn tìm đc hai số có hiệu chia hết cho 5
chứng minh trong 14 STN bất kì có 3 c/s luôn tìm đc 2 số mà khi ghép với nhau ta đc số có 6 c/s và chia hết cho 13
Cho n STN bất kỳ ( m>5) chứng minh rằng có thể tìm được 2 STN bất kỳ có hiệu chia hết cho 6
1.CMR trong 12 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 11
2.CMR trong 15 số tự nhiên bất kì có thể tìm đc 2 số có hiệu của chúng chia hết cho 14
3.CM tồn tại 1 số chia hết cho 1995 mà các chữ số của số đó chỉ gồm các chữ số 2 và chữ số 0
4.CMR nếu có n số tự nhiên có tích bằng n và có tổng bằng 2012 thì n chia hết cho 4
5.tìm số tự nhiên n sao cho :
a) n+3 chia hết cho n-2 ( n>2)
b)2n+9 chia hết cho n-3 ( n>3)
c)(16-3n ) chia hết cho (n+4) với n<6
d) (5n+2) chia hết cho (9-2n)
Bài 5 : ( Mình dùng dấu chia hết là dấu hai chấm )
a) n+3 : n-2
=> n+3 : n+3-5
=> n+3 : 5 ( Vì n+3 : n+3 )
=> n+3 là Ư(5) => Bạn tự làm tiếp nhé!
b) 2n+9 : n-3
=> n + n + 11 - 3 : n-3
=> n + 11 : n-3
=> n + 14 - 3 : n-3
=> 14 : n - 3 ( Vì n - 3 : n-3 )
=> n-3 là Ư(14) => Tự làm tiếp
c) + d) thì bạn tự làm nhé!
-> Chúc bạn học giỏi :))
cho 7 STN bất kì a^1 ; a^2 ;...;a^7.
chứng minh rằng luôn trọn được 4 số từ những số trên để tổng của chúng chia hết cho 4
cho 7 STN bất kì a^1 ; a^2 ;...;a^7.
chứng minh rằng luôn trọn được 4 số từ những số trên để tổng của chúng chia hết cho 4