so sánh A=10^15+1/10^16+1
B=10^16+1/10^17+1
So sánh
A = 10^15+1/10^16+1 và B = 10^16+1/10^17+1
so sánh 10 mủ 15+1/10 mủ 16 +1 và 10 mủ 16+1/10 mủ 17 +1
So sánh A và B
A= 10^15+1 / 10^16+1
B= 10^16+1 / 10^17+1
Ta có:
10A=1016+10/1016+1=1+(9/1016+1)
10B=1017+10/1017+1=1+(9/1017+1)
Vì 9/1016+1 > 9/1017+1 nên 10A>10B,do đó A>B
Ta có:
10A=10^16+10/10^16+1=1+﴾9/10^16+1﴿
10B=10^17+10/10^17+1=1+﴾9/10^17+1﴿
Vì 9/10^16+1 > 9/10^17+1 nên 10A>10B,do đó A>B
Ta có:
10A= 10^16+10 / 10^16+1
=1+ 9 / 10^16 + 1
10B= 10^17+10 / 10^17+1
=1+ 9 / 10^17 + 1
Vì 9 / 10^16 + 1 > 9 / 10^17 + 1 nên 10A>10B
Do đó A > B
(''/''= phần ''*''= mũ)
so sánh A với B biết
A= 10*15 + 1/10*16+1
B=10*16+1/10*17+1
Ta có :
\(A=\frac{10^{15}+1}{10^{16}+1}=\frac{\left(10^{15}+1\right).10}{\left(10^{16}+1\right).10}=\frac{10^{16}+10}{10^{17}+10}\)
\(\Rightarrow A=\frac{10^{16}+1+9}{10^{17}+1+9}\)
Vì \(\frac{10^{16}+1}{10^{17}+1}< \frac{10^{16}+1+9}{10^{17}+1+9}\)
Mà \(A=\frac{10^{16}+1+9}{10^{17}+1+9}\)nên \(A>B\)
Vậy \(A>B\)
A= 1015+1/1016+1
B= 1016+1/1017+1
So sánh A và B
A=10^15+1/10^16+1
=>10A=1+9/10^16+1
B=10^16+1/10^17+1
=>10B=1+9/10^17+1
=>10A>10B=>A>B
Vậy:A>B
So sánh A và B biết:\(A=\frac{10^{15}+1}{10^{16}+1}vàB=\frac{10^{16}+1}{10^{17}+1}\)
so sánh A và B biết A=10^15+11/10^16+1 và B=10^17+1/10^18+1
so sánh
a, A=\(\frac{10^{17}-1}{10^{16}-1}vaB=\frac{10^{16}+2}{10^{15}+2}\)
b,\(C=\frac{2017^{15}+1}{2017^{16}+1}vaO=\frac{2017^{16}-1}{2017^{17}-1}\)
c,\(E=\frac{99^{15}-1}{99^{16}-1}vaF=\frac{99^{16}+2}{99^{17}+2}\)
So sánh:
\(A=\frac{10^{15}+1}{10^{16}+1}\)và \(B=\frac{10^{16}+1}{10^{17}+1}\)
\(A=\frac{10^{15}+1}{10^{16}+1}\)
\(\Rightarrow10A=\frac{10^{16}+10}{10^{16}+1}=\frac{\left(10^{16}+1\right)+9}{10^{16}+1}=1+\frac{9}{10^{16}+1}\)
\(A=\frac{10^{16}+1}{10^{17}+1}\)
\(\Rightarrow10B=\frac{10^{17}+10}{10^{17}+1}=\frac{\left(10^{17}+1\right)+9}{10^{17}+1}=1+\frac{9}{10^{17}+1}\)
Vì \(\frac{9}{10^{16}+1}>\frac{9}{10^{17}+1}\left(Do10^{16}+1< 10^{17}+1\right)\)
\(\Rightarrow10A>10B\)
\(\Rightarrow A>B\)