Cho biểu thức A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
hãy rút gọn phân số !
giải ra nhé !
Cho biểu thức A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
Hãy rút gọn biểu thức ?
Giải ra từng bước nhé !
A=(a3+a2)+(a2-1) phan ( a3+a2)+a2+(a+1)=a2(a+1)+(a+1) phan a2( a+1)+(a(a+1)+(a+1)=
(a+1(a2+a-1) phan a+1) a2+a+1)=a2+a-1 phan a2+a-1
b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )
=> a2 + a - 1 chia hết cho d
a2 + a +1 chia hết cho d
=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d
=> d = 1 hoặc d = 2
Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2
=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ
=> d không thể = 2
Vậy d = 1 => đpcm
a2 nghi la: \(a^2\)
cho biểu thức A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
â. Rút gọn biểu thức
b. Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản
giải giúp mk nhé !
Cho biểu thức \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức A
b) Chứng mình rằng a là số nguyên thì giá trị biểu thức tìm được ở câu a là một phân số tối giản
- Giúp mình với mình nhé -
bài 1 :
rút gọn biểu thức:
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
hơi nâng cao bài này cho bạn the marker giải nhé
Toán học is my best:)) nâng cao chỗ nào bạn ?
\(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
P/s : Lê Đức Anh làm tắt thế !
a5 + 2-1?????
a5+ 2+2+1?????
Thế t giải đc ko :D
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
Cho \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a)Rút gọn biểu thức
b)Chứng minh nếu \(a\in Z\)thì biểu thức đã rút gọn là phân số tối giản.
Cho biểu thức A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) Chứng minh rằng nếu a là số nguyên thì biểu thức A là 1 phân số tối giản
\(giải:\)\(a,\)
\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)\(=\frac{a^3+a^2+a^2-1}{a^3+2a^2+2a+1}\)
\(=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+1\right)+\left(2a^2+2a\right)}\)
\(=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{\left(a+1\right)\left(a^2-a+1\right)+2a\left(a+1\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2-a+1+2a\right)}\)
\(=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
\(b,\)gọi d là \(ƯCLN\left(a^2+a-1,a^2+a+1\right)\)
\(\Rightarrow a^2+a-1⋮d\) và \(a^2+a+1⋮d\)
\(\Rightarrow\left(a^2+a-1\right)-\left(a^2+a+1\right)⋮d\)
\(\Rightarrow-2⋮d\)hay\(2⋮d\)
mà \(a^2+a+1=\left(a^2+a\right)+1=a\left(a+1\right)+1\)
mà a(a+1) là tích của hai số nguyên liên tiếp nên chia hết cho 2 => a(a+1) là một số chẵn => a(a+1)+1 là một số lẻ
=> a(a+1)+1 không chia hết cho 2 hay \(a^2+a+1\)ko chia hết cho 2
\(\RightarrowƯCLN\left(a^2+a-1,a^2+a+1\right)=1\)
\(\Rightarrow\frac{a^2+a-1}{a^2+a+1}\)là một phân số tối giản hay A là phân số tối giải(đpcm)
a ) \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a-1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b ) Gọi d là ƯC(a2 + a - 1; a2 + 1 + 1) Nên ta có :
a2 + a - 1 ⋮ d và a2 + a + 1 ⋮ d
=> (a2 + a + 1) - (a2 + a - 1) ⋮ d
=> 2 ⋮ d => d = { 1; 2 }
Xét a2 + a + 1 = a(a + 1) + 1 . Vì a(a + 1) là 2 số nguyên liên tiếp nên a(a + 1) ⋮ 2
=> a(a + 1) + 1 không chia hết cho 2
=> ƯC(a2 + a - 1; a2 + 1 + 1) = 1
=> \(\frac{a^2+a-1}{a^2+a+1}\) là phân số tối giản
Hay \(A\)là phân số tối giản (đpcm)
cho biểu thức\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a) Rút gọn biểu thức
b) Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản
( ai giải được nhớ ghi cách giải)
Cho biểu thức A=a^3+2a^2-1/a^3+2a^2+2a+1
Rút gọn phân số A
Cho biểu thức A = \(\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)
a, Rút gọn biểu thức
b,Chứng minh rằng nếu a là 1 số nguyên thì giá trị của biểu thức tìm được ở câu a, là một phân số tối giản.
Ai giải được mình tick
a,\(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a+1}\)
b, Gọi ƯCLN(a2+a-1;a2+a+1) = d
Ta có: \(\hept{\begin{cases}a^2+a-1⋮d\\a^2+a+1⋮d\end{cases}}\)
\(\Rightarrow a^2+a+1-\left(a^2+a-1\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d=\left\{\pm1;\pm2\right\}\)
Lại có: \(a^2+a-1=a\left(a+1\right)-1\)
Vì \(a\left(a+1\right)\)là số chẵn => a(a+1) - 1 là số lẻ
=> d là số lẻ
=> d không thể bằng 2 hoặc -2
=> d = {1;-1}
Vậy...