tính B=1/2+(1/2)^2+(1/2)^3+(1/2)^4+.........+(1/2)^99 =>B=..........
Tính B = 1/2+(1/2)^2+ (1/2)^3+(1/2)^4+....+(1/2)^98+(1/2)^99+(1/2)^99 Ta được B=
Ta có: B= \(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\)
=> \(\frac{1}{2}B=\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{2}\right)^4+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\)
=> B - \(\frac{1}{2}B=\left(\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{99}\right)\)
\(-\left(\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+\left(\frac{1}{4}\right)^4+...+\left(\frac{1}{2}\right)^{99}+\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\right)\)
=> B - \(\frac{1}{2}B=\left(\frac{1}{2}+\left(\frac{1}{2}\right)^{99}\right)-\left(\left(\frac{1}{2}\right)^{100}+\left(\frac{1}{2}\right)^{100}\right)=\frac{1}{2}\)
=> B \(\times\left(1-\frac{1}{2}\right)=\frac{1}{2}\)
=> B = 1
Câu này chắc chắn đúng luôn
Tính A:B
a)A=98+1/2+1/3+1/4+...+1/99
B=2/3+4/3+5/4+...+100/99
b)A=2018+1/2+1/3+1/4+...+1/2019
B=3/2+4/3+3/4+...+2020/2019
c)A=99/1+98/2+97/3+...+2/98+1/99
B=1/2+1/3+1/4+...+1/100
Giải đầy đủ
a) \(A=98+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{99}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}{\frac{3}{2}+\frac{4}{3}+...+\frac{100}{99}}=1\)
b) \(A=2018+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2019}\)(có 2018 phân số nên ta cộng 1 vào mỗi phân số)
\(A=\left(\frac{1}{2}+1\right)+\left(\frac{1}{3}+1\right)+...+\left(\frac{1}{2019}+1\right)\)
\(A=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
Và \(B=\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}{\frac{3}{2}+\frac{4}{3}+...+\frac{2020}{2019}}=1\)
c) \(A=\frac{99}{1}+\frac{98}{2}+...+\frac{1}{99}\)
\(A=99+\frac{98}{2}+...+\frac{1}{99}\)(có 98 phân số nên ta cộng 1 vào từng phân số)
\(A=\left(\frac{98}{2}+1\right)+\left(\frac{97}{3}+1\right)+...+\left(\frac{1}{99}+1\right)+1\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}+1\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)\)
Và \(B=\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}}=100\)
a)\(B=\frac{3}{2}+\frac{4}{3}+\frac{5}{4}+...+\frac{100}{99}\)
\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{99}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\right)\)
\(\Rightarrow B=98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}{98+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
b)\(B=\left(1+\frac{1}{2}\right)+\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{4}\right)+...+\left(1+\frac{1}{2019}\right)\)
\(\Rightarrow B=\left(1+1+1+...+1\right)+\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\right)\)
\(\Rightarrow B=2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}{2018+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}}=1.\)
Vậy \(A:B=1.\)
c)\(A=\left(1+1+...+1\right)+\frac{98}{2}+\frac{97}{3}+...+\frac{2}{98}+\frac{1}{99}\)
\(A=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{2}{98}\right)+\left(1+\frac{1}{99}\right)\)
\(A=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{98}+\frac{100}{99}\)
\(A=100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)\)
\(\Rightarrow A:B=\frac{A}{B}=\frac{100\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{98}+\frac{1}{99}}=1.\)
Vậy \(A:B=1.\)
Tính tổng:
a) A= 1^2*2 + 2^2 *3 + 3^2*4 +...+ 99^2*100
b) B= 1*2^2 + 2*3^2 + 3*4^2 +...+ 99*100^2
c) C= 1^3 + 2^3 + 3^3 +...+ 99^3
1.Tính
B=1/2+2/2^2+3/2^3+4/2^4+.....+99/2^99+100/2^100
Tính nhanh
a.(1+1/2)×(1+1/3)×(1+1/4)×...×(1+1/98)×(1+1/99).
b.1/2×2/3×3/4×...×97/98×98/99×99/100
a,=3/2*4/3*....100/99
=3*4*5*....*100/2*3*...*99
=100/2=50
b, nhân lên băng:
1*2*3*...*99/2*3*...*100=1/100
Tính nhanh
a) 1 + 2 + 3 + … + 99 + 100 b) 2 + 4 + 6 + … + 96 + 98
c) (–1) + 2 + (–3) + 4 + … + (–99) +100 d) –1 + 2 – 3 + 4 – … – 99 + 100
Cho A = 100+1/99+2/98+...99/1
B = 100-1/2-2/3-3/4-...-98/99
Tính A/B
1/tính nhanh
D=1^2+2^2+3^2+.......+1999^2
2/tính nhanh
a,A=1*3+2*4+3*5+....+99*101
b,B=1*4+2*5+3*6+4*7+.......+99*102
c,C=2^2+4^2+6^2+......+98^2+100^2
d,D=1*2^2+2*3^2+3*4^2+......+98.99^2
1.A=(2/3+3/4+4/5+................+99/100)*(1/2+2/3+..............+98/99);B=(1/2+2/3+..............+99/100)*(2/3+3//4+...................+98/99)
Tính A và B bằng cách thuận tiện nhất.
2.Cho a=2008/2009;b=2009/2008;c=1/2009;d=2007/2008
Tính a-b+c+d
3.Tìm STN m biết:
2016+m/m+2520+m/m+3024+m/m