So sánh 11 với 1=2008*2010+419/2009*2009+418;m+5/m+7 vàm+7/m+9(bằng cách thuận tiện nhất)
so sánh A và B với A=2008/2009 +2009/2010 +2010/2011 và B= (2008+2009+2010) / (2009+2010+2011)
mình cũng có bài giống như này nhưng chưa làm được
Ta có: 2008/2009 > 2008/2009+2010+2011
2009/2010> 2009/2010+2011
2010/2011>2010>2010/2009+2010+2011
Suy ra: A>2008+2009+2010/2009+2010+2011
Vậy A >B
so sánh A và B với A=2008/2009 +2009/2010 +2010/2011 và B= 2008+2009+2010 / 2009+2010+2011
Tớ cũng có bài này nhưng chưa làm được
cau tra loi la 50 khong can biet lam the nao
so sánh 2008/2009 + 2009/2010 + 2010/2011+ 2011/2008 với 4
Bạn chỉ cần lấy : (2008/2009+2009/2010+2010/2011+2011/2008)-4=số dương
vậy (2008+...2008) > 4
so sánh: 2008/2009+2009/2010+2010/2011+2011/2008 với 4
Có 4 = 1+1+1+1
Vì 2008/2009<1 ; 2009/2010<1; 2010/2011<1;2011/2012<1
=>2008/2009+2009/2010 + 2010/2011+2011/2012<1+1+1+1=4
2008/2009+2009/2010....2008+2009/2009+2010
So sánh ♣♣♣
Vì khi tang tu so va mau so len 1 don vi voi so thu nhat ta duoc:
2008+1/2009+1=2008/2010 + 1/2010
tuong tu cac phan so khac neu ban muon so sanh cac phan so voi nhau.
so sánh 2008/2009+2009/2010+2010/2011+2011/2008 với 4
Do \(\frac{2008}{2009};\frac{2009}{2010};\frac{2010}{2011}\)bé hơn 1 , chỉ có phân số \(\frac{2011}{2008}\)lớn hơn 1 nên tổng của chúng bé hơn 4 .
So sánh A và B biết: A= \(\dfrac{2008+2008+2010}{2009+2010+2011}\) và B= \(\dfrac{2008}{2009}\)+ \(\dfrac{2009}{2010}\)+ \(\dfrac{2010}{2011}\)
A = \(\dfrac{2008}{2009+2010+2011}+\dfrac{2009}{2009+2010+2011}+\dfrac{2010}{2009+2010+2011}\)
Ta có:
\(\dfrac{2008}{2009}>\dfrac{2008}{2009+2010+2011}\)
\(\dfrac{2009}{2010}>\dfrac{2009}{2009+2010+2011}\)
\(\dfrac{2010}{2011}>\dfrac{2010}{2009+2010+2011}\)
Từ 3 điều trên suy ra : A < B
20092008 +1/20092009+1 So Sánh với 20092009+1/20092010+1
a du may co nik qc ak cho anh muon xog anh tra loi
Đặt \(A=\frac{2009^{2008}+1}{2009^{2009}+1}\)và \(B=\frac{2009^{2009}+1}{2009^{2010}+1}\)
\(A=\frac{2009^{2008}+1}{2009^{2009}+1}\Rightarrow2009A=\frac{2009.\left(2009^{2008}+1\right)}{2009^{2009}+1}=\frac{2009^{2009}+2009}{2009^{2009}+1}=1+\frac{2008}{2009^{2009}+1}\)
\(B=\frac{2009^{2009}+1}{2009^{2010}+1}\Rightarrow2009B=\frac{2009.\left(2009^{2009}+1\right)}{2009^{2010}+1}=\frac{2009^{2010}+2009}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
Vì \(\frac{2008}{2009^{2009}+1}>\frac{2008}{2009^{2010}+1}\Rightarrow2009A>2009B\Rightarrow A>B\)
a) Chứng tỏ rằng: 1/41+1/42+1/43+...+1/80 > 7/12
b) So sánh: A=2008/2009+2009/2010+2010/2011 VÀ B=2008+2009+2010/2009+2010+2011
\(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+.....+\frac{1}{80}\)
\(=\left(\frac{1}{41}+\frac{1}{42}+\frac{1}{43}+\frac{1}{44}+.....+\frac{1}{60}\right)+\left(\frac{1}{61}+\frac{1}{62}+......+\frac{1}{80}\right)\)
\(>\left(\frac{1}{60}+\frac{1}{60}+\frac{1}{60}+.....+\frac{1}{60}\right)+\left(\frac{1}{80}+\frac{1}{80}+\frac{1}{80}+.....+\frac{1}{80}\right)\)
\(=\frac{1}{3}+\frac{1}{4}\)
\(=\frac{7}{12}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)