Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bao Binh Dang yeu
Xem chi tiết
Bao Binh Dang yeu
22 tháng 6 2017 lúc 9:48

moi nguoi giai nhanh giup minh nhe

Lan Nguyễn
Xem chi tiết
Kiệt Nguyễn
26 tháng 9 2020 lúc 21:58

a) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì p2 + 8 = 22 + 8 = 12 (không là số nguyên tố, loại)

* Xét p = 3 thì p2 + 8 = 32 + 8 = 17 (là số nguyên tố, thỏa mãn). Khi đó p2 + 2 = 32 + 2 = 11 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì p2 + 8 = (3k + 1)2 + 8 = 9k2 + 6k + 9 = 3 (3k2  + 2k + 3)\(⋮\)3 mà 3 (3k+2k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì p2 + 8 = (3k + 2)2 + 8 = 9k2 + 12k + 12 = 3 (3k2  + 6k + 4)\(⋮\)3 mà 3 (3k2  + 6k + 4) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và p2 + 8 là các số nguyên tố thì p2 + 2 là số nguyên tố (đpcm)

b) Xét các trường hợp p nguyên tố: 

* Xét p = 2 thì 8p2 + 1 = 8.22 + 1 = 33 (không là số nguyên tố, loại)

* Xét p = 3 thì 8p2 + 1 = 8.32 + 1 = 73 (là số nguyên tố, thỏa mãn). Khi đó 2p + 1 = 2.3 + 1 = 7 (là số nguyên tố, đpcm)

* Xét p > 3 thì p có dạng 3k + 1 hoặc 3k + 2 (k > 0)

+) Nếu p = 3k + 1 thì 8p2 + 1 = 8(3k + 1)2 + 1 = 8(9k2 + 6k + 1) + 1 = 3(24k2 + 16k + 3)\(⋮\)3 mà 3(24k2 + 16k + 3) > 3 nên không là số nguyên tố (loại trường hợp này)

+) Nếu p = 3k + 2 thì 8p2 + 1 = 8(3k + 2)2 + 1 = 8(9k2 + 12k + 4) + 1 = 3(24k2 + 32k + 11)\(⋮\)3 mà 3(24k2 + 32k + 11) > 3 nên không là số nguyên tố (loại trường hợp này)

Vậy nếu p và 8p2 + 1 là các số nguyên tố thì 2p + 1 là số nguyên tố (đpcm)

Khách vãng lai đã xóa
Trung Trần
Xem chi tiết
Lê Nhật Minh
Xem chi tiết
Minh Dâm
18 tháng 1 2016 lúc 19:16

trừ điểm Lê Nhật Minh đi 

Vương Thanh Ngân
Xem chi tiết
Vu Nguyen Bao Ngoc
Xem chi tiết
Ngô Văn Phương
25 tháng 12 2014 lúc 9:58

Số nguyên tố lớn hơn 3 sẽ có dạng 3k+1 hay 3k+2  (k thuộc N)

Nếu p=3k+1 thì p+2=3k+1+2=3k+3=3.(k+1) là số nguyên tố. Vì 3.(k+1) chia hết cho 3 nên dạng p=3k+1 không thể có.

Vậy p có dạng 3k+2 (thật vậy, p+2=3k+2+2=3k+4 là 1 số nguyên tố).

=>p+1=3k+2+1=3k+3=3.(k+1) chia hết cho 3.

Mặt khác, p là 1 số nguyên tố lớn hơn 3 cũng như lớn hơn 2 nên p là 1 số nguyên tố lẻ => p+1 là 1 số chẵn => p+1 chia hết cho 2.

Vì p chia hết cho cả 2 và 3 mà ƯCLN(2,3)=1 nên p+1 chia hết cho 6.

 

Phạm Văn Toản
6 tháng 4 2016 lúc 11:33

phuong ne 3(k+1)sao la so nguyen to duoc

dào văn doa
1 tháng 1 lúc 15:31

p là số nguyên tố lớn hơn 3

=>p không chia hết cho 3

=>p=3k+1;3k+2

xét p=3k+1=>p+2=3k+3=3(k+1) chia hết cho 3

=>p+2 là hợp số(Vô lí)

=>p=3k+2

=>p+1=3k+3=3(k+1)

p là số nguyên tố lớn hơn 3

=>p là số lẻ

=>p+1 là số chẵn

=>p+1 chia hết cho 2

Vì (3;2)=1=>p+1 chia hết cho 6

=>đpcm

Lê Nhật Minh
Xem chi tiết
Ngoc Bich
Xem chi tiết
nguyen thi mai
Xem chi tiết
khanh hung Le nguyen
7 tháng 4 2018 lúc 21:59

Xét vì P>5 nên P thuộc dạng 5k+1 ; 5k+2 ; 5k+3 ;5k+4

nếu P=5k+1 =>2P+1=2(5k+1)+1=10k+3

                     =>4P+1=4(5k+1)+1=20k+5(TM)

nếu P=5k+2=>2P+1=2(5k+2)+1=10k+5(KTM với đề bài)

nếu P=5k+3 =>2P+1=2(5k+3)+1=10k+7

                    =>4P+1=4(5k+3)+1=20k+13(KTM với đề bài)

nếu P=5k+4 =>2P+1=2(5k+4)+1=10k+9

                    =>4P+1=4(5k+4)+1=20k(KTM với đề bài)

Vậy với P=5k+1 thì 4P+1 là hợp số