Chứng minh:
\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)
Chứng minh: \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}<\frac{1}{16}\)
\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)
=\(\left(\frac{1}{5^2}+\frac{2}{5^3}+.....+\frac{11}{5^{12}}\right)\)<\(\frac{1}{4.5}+\frac{2}{4.5.6}+...+\frac{11}{4.5.6...15}\)
=???
CHỨNG MINH RẰNG:
A = \(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{11}{5^{12}}< \frac{1}{16}\)
5A=1/5=2/5^2+......+11/5^11
4A=1/5+1/5^2+......+1/5^11-11/5^12
20A=1+1/5+1/5^2+.....+1/5^10-11/5^11
16A=1-1/5^11+11/5^12-11/5^11
vi 1-1/5^11<1;11/5^12-11/5^11<0
16A<1
A<1/16
k cho minh nhe
Bonking
bn tham khảo đây nhé :
Câu hỏi của Khanh Mai Lê - Toán lớp 6 - Học toán với OnlineMath
mình tính siêu đúng
...
Cho \(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)
Chứng minh A<\(\frac{1}{16}\)
Chứng minh :
1,C=\(\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{70}.C< \frac{3}{4}\)
2,D=\(\frac{1}{5^2}+\frac{1}{9^2}+...+\frac{1}{409^2}< \frac{1}{12}\)
3,E=\(\frac{5}{5.8.11}+\frac{5}{8.11.14}+...+\frac{5}{302.305.308}< \frac{1}{48}\)
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{-5}{6}+\frac{5}{10}+\frac{5}{11}+\frac{5}{12}}+\frac{\frac{3}{2}+1+\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}+\frac{5}{4}}\)
-5/6 là -5/8
Tính nhanh
\(\frac{\frac{3}{8}-\frac{3}{10}+\frac{3}{11}+\frac{3}{12}}{\frac{5}{8}-\frac{5}{10}+\frac{5}{11}+\frac{5}{12}}+\frac{\frac{3}{2}+1+\frac{3}{4}}{\frac{5}{2}+\frac{5}{3}+\frac{5}{4}}\)
\(=\frac{3.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}{5.\left(\frac{1}{8}-\frac{1}{10}+\frac{1}{11}+\frac{1}{12}\right)}+\frac{3.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}{5.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)}\)
\(=\frac{3}{5}+\frac{3}{5}\)
\(=\frac{6}{5}\)
Cho A=\(\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)với n\(\inℕ\).Chứng minh rằng A<\(\frac{1}{16}\)
Giúp mình với, hiện đang cần gấp lắm.
5A=\(\frac{1}{5}+\frac{2}{5^2}...+\frac{n}{5^n}...+\frac{11}{5^{11}}\)
=>4A=5A-A=\(\frac{1}{5}+\frac{1}{5^2}...+\frac{1}{5^{11}}-\frac{11}{5^{12}}\)
=>20A=\(1+\frac{1}{5}+...+\frac{1}{5^{10}}-\frac{11}{5^{11}}\)
=>16A=20A-4A=\(1-\frac{1}{5^{11}}+\frac{11}{5^{12}}-\frac{11}{5^{11}}\)
Mà \(1-\frac{1}{5^{11}}< 1\),\(\frac{11}{5^{12}}-\frac{11}{5^{11}}< 0\)
=>16A<1
Do đó: A<1/16(đpcm)
1. Rút gọn:
\(\frac{\frac{2}{3}-\frac{1}{4}+\frac{5}{11}}{\frac{5}{12}+1-\frac{7}{11}}\)
2. Chứng minh rằng:
\(\frac{1}{5}+\frac{1}{6}+\frac{1}{7}+....+\frac{1}{17}\varepsilon N\)
Cho \(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+...+\frac{11}{5^{12}}\)với \(n\in N.\)Chứng minh rằng \(A<\frac{1}{16}\)
\(A=\frac{1}{5^2}+\frac{2}{5^3}+\frac{3}{5^4}+...+\frac{n}{5^{n+1}}+\frac{11}{5^{12}}\)với \(n\in N.\) Chứng minh rằng \(A<\frac{1}{16}\)