CHO C=1/2*3/4*...*199/200.CHUNG MINH 1/15<C<1/10
chung minh rang 1-1/2+1/3-1/4+...+1/99-1/200=1/101+1/102+...+1/199+1/200
chung minh rang 1-1/2+1/3-1/4+.....+1/199-1/200=1/101+1/102+.....+1/200
bien doi so sdau tien
1-1/2+1/3-1/4+...+1/199-1/200
(1+1/3+1/5+...+1/199)-(1/2+1/4+1/6+...+1/200)
(1+1/2+1/3+1/4+1/5+1/6+...+1/199+1/200)-2*(1/2+1/4+1/6+,,,+1/200)
(1+1/2+1/3+1/4+...+1/200)-((1+1/2+1/3+...+1/100)
1/101+1/102+1/103+...+1/200=so bewn canh
Chung minh rang:
a,1-1/2+1/3-1/4+...+1/199-1/200=1/101+1/102+...+1/200
chung minh rang
\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{200}\)
giup minh minh like cho nho giai chi tiet mot chut nhe
1-1/2+1/3-1/4+...+1/199-1/200=(1+1/2+1/3+1/4+...+199+1/200)-(1+1/2+1/3+...+1/100)=1+1/2+1/3+1/4+...+1/199+1/200-1-1/2-1/3-1/4-...-1/99-1/100=(1+1/2+1/3+...+1/100)-(1+1/2+1/3+...+1/100)+(1/101+1/102+...+1/200)=0+(1/101+1/102+...+1/200)=(1/101+1/102+...+1/200)(đpcm)
cho C=1/2*3/4*....*199/200
chứng minh Cmũ 2 <1/201
A=1/2+3/4+5/6+........+199/200
chung to rang A^2<1/200
a) So sánh A và B, biết:A=199 mũ 199+1/199 mũ 200+1 VÀ B=199 mũ 198+1/199 mũ 199+1
b)chứng minh:3<1+1/2+1/3+1/4+1/5+...+1/63<6
c)Chứng minh A ko thuộc N biết:A=1/2+1/3+1/4+1/5+...+1/50
Bài luyện thi HSG thầy cho khó quá giúp mk vs
cho A = 1/199+2/198+3197+...+198/2+199/1.Chứng minh A = 200.(1/2+1/3+...+1/200)
\(A=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{189}{2}+\frac{199}{1}\)
\(A=\frac{1}{199}+\frac{2}{198}+\frac{3}{197}+...+\frac{198}{2}+199\)
\(A=\left(\frac{1}{199}+1\right)+\left(\frac{2}{198}+1\right)+\left(\frac{3}{197}+1\right)+...+\left(\frac{198}{2}+1\right)+1\)
\(A=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1\)
\(A=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}\)
\(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
Vậy \(A=200\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)\)
A=1/2+3/4+5/6+........+199/200
chung to rang A^2<1/201
3)
C= (1/2).(3/4).(5/6).....(199/200).
C= (1.3.5….199)/(2.4.6…200)
C²= 1².3².5²….199²/(2².4².6²…200²)
Ta có: k²>k²-1=(k-1)(k+1) nên 2²>1.3; 4²>3.5 … 200²>199.201.
=>
C² < 1².3².5²….199²/[(1.3).(3.5).(5.7)…(199.2...
=1².3².5²….199²/(1.3.3.5.5.7…199.201)
=1².3².5²….199²/(1.3².5².7²…199².201)
=1/201