M=1/2+1/3+1/4+1/5+1/6+1/7+1/8+1/9 chứng minh M chia hết cho 11
Cho a/b = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 +1/9 . Chứng minh rằng a chia hết cho 11
cho a/b = 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 + 1/9 với a;b thuộc N. Chứng minh rằng a chia hết cho 11.
Cho a/b= 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 +1/9.
Chứng minh rằng a chia hết cho 11.
Dễ thấy 1/2+1/9=11/9*2
1/3+1/8=11/8*3....
lm theo thế sẽ rút đc tử là 11
cho M=(5^9+5^8+5^7).(3^6+3^5+3^4+3^3+3^2+3^1) chứng minh M chia hết cho 2015
Cho tổng m =1+2+3+4+5+6+7+8+9+10+11+12+13+14 hỏi m có chia hết cho tổng 1+3+5+7+9+11+13 ?
\(M=1+2+3+4+5+6+7+8+9+10+11+12+13+14\)
\(=\left(1+14\right)+\left(2+13\right)+\left(3+12\right)+...+\left(6+9\right)+\left(7+8\right)\)
\(=15+15+15+...+15+15\)
\(=15\times7=105\)
\(1+3+5+7+9+11+13\)
\(=\left(1+13\right)+\left(3+11\right)+\left(5+9\right)+7\)
\(=14+14+14+7=49\)
Ta có: \(105\div49=2\)dư \(7\)
Vậy \(M\)ko chia hết cho \(1+3+5+7+9+11+13\)
Cho tổng m =1+2+3+4+5+6+7+8+9+10+11+12+13?+14 hỏi m có chia hết cho tổng 1+3+5+7+9+11+13 không ? Vì sao ?
ko chia hết.Vì 1+2+3+.......+13 \(⋮\) 1+2+....+13 mà 14 ko\(⋮\) cho 1+2+.......+13
1 Cho n(n+1) là tích 2 số tự nhiên liên tiếp thì chia hết cho 2 .
Chứng minh: a, 3n mũ 2 + n chia hết
b, (4n mũ 2 + 4n ) + 8n + 16 chia hết 8
2 , Chứng minh:C = 1 + 3 + 3 mũ 2 + 3 mũ 3 + .........+ 3 mũ 11 chia hết 13
3 , Tìm số dư của : a, 2004 mũ 2004 khi chia cho 11
b, 776 mũ 776 + 777 mũ 777 + 778 mũ 778 khi chia cho 3 , 5
4 , Chứng minh : 9 mũ 2002 - 1 chia hết 18
5 , Chứng minh : 7 mũ 214 - 4 chia hết 3
6 , Chứng minh : 4 mũ 200 + 3 mũ 1002 chia hết 13
cho M=9+8+2+7/3+...+1/9
N=1/2+1/3+1/4+...+1/10
chứng minh: M chia hết cho N
hơn 1nămtrời cả ad vận chưa có thiên tài nào thèm giải
Chứng minh rằng
a.5^1 - 5^9 + 5^8 chia hết cho 7
b.6 + 6^2 + 6^3 + 6^4 + .........+ 6^9 + 6^10 chia hết cho 7
c.1+2+3+3^2+3^3+....+3^99 chia hết cho 4
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)
\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)
\(5^8-5^7-1\equiv5\left(mod7\right):v\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)
\(⋮7\)