Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kim Moonyul
Xem chi tiết
Nguyễn Hà Chi
23 tháng 3 2021 lúc 21:56

173 - 1 digit correct

      -  position correct

132 - 2 digits correct

      - both positions wrong

524 - 2 digits correct

       - both positions correct

Answer is 523

Khách vãng lai đã xóa
Kim Moonyul
27 tháng 3 2021 lúc 15:15

Thanks 

Khách vãng lai đã xóa
Lucy Heartfilia
Xem chi tiết
Đàm Hoàng Phương Linh
Xem chi tiết
Đàm Hoàng Phương Linh
12 tháng 8 2020 lúc 17:10

Trả lời hộ mik ai làm nhanh mik k cho

Thank you

Khách vãng lai đã xóa
Võ Quang Dũng
Xem chi tiết
Duong Hanh Nhi
17 tháng 3 2016 lúc 14:43

2*4*3*2*1=48 numbers

Phạm Hoàng Anh
Xem chi tiết
Lucy Heartfilia
Xem chi tiết
MI NA MAI
Xem chi tiết
Chara Madon
18 tháng 10 2023 lúc 19:13

Vãi There are a total of $8\times 7\times 6\times 5\times 4=67,\!200$ ways to form a 5-digit number with distinct digits out of 0, 1, 2, 3, 4, 5, 6, 7. We claim that these can be grouped into $\binom{5}{2}\cdot 2=20$ pairs, where each pair adds up to 7777. The pairs are $(0, 7777), (1, 7776), \ldots, (4, 7773)$ and $(5, 7772), \ldots, (7, 7770)$. Thus, the sum of all the possible numbers is $20\cdot 7777=\boxed{155,540}.$ đó ko biết đúng hay sai nhé

Trần Thu Hà
19 tháng 10 2023 lúc 18:55

Since we are forming 5-digit numbers, the first digit cannot be 0. Therefore, we have 7 choices for the first digit. After choosing the first digit, we have 7 remaining digits to choose from for the second digit, 6 remaining digits for the third digit, 5 remaining digits for the fourth digit, and 4 remaining digits for the fifth digit. So, the total number of 5-digit numbers that can be formed is 7 * 7 * 6 * 5 * 4 = 5,040. To find the sum of these numbers, we can use the formula for the sum of an arithmetic series: S = (n/2)(a + l), where S is the sum, n is the number of terms, a is the first term, and l is the last term. In this case, the first term is 1,2345 (the smallest 5-digit number that can be formed using the given digits) and the last term is 7,6543 (the largest 5-digit number that can be formed using the given digits). Using the formula, we can calculate the sum as follows: S = (5040/2)(12345 + 76543) S = 2520 * 88888 S = 224,217,600 Therefore, the sum of all numbers that can be formed using the digits 0, 1, 2, 3, 4, 5, 6, 7 is 224,217,600. ...

a là hot boy
Xem chi tiết
Hoàng Nguyên Hiếu
7 tháng 5 2017 lúc 11:12

Nếu bn muốn hỏi bằng tiếng anh thì vào trang hỏi - đáp Math you !

Minh Tú
Xem chi tiết
Hoàng Khắc Trung
21 tháng 9 2021 lúc 10:37

: Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}

Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.

Có 8 cách chọn chữ số a lấy từ tập S.

Có 7 cách chọn chữ số b lấy từ tập S và khác a.

Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.

Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.

Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.

Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.

Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.

Vậy tổng các số abcde mở rộng là:

840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)

Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.

Có 7 cách chọn chữ số b lấy từ tập T.

Có 6 cách chọn chữ số c lấy từ tập T và khác b.

Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.

Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.

Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.

Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.

Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)

Từ (1) và (2) suy ra tổng các số abcde cần tìm là:

261330720 – 3732960 = 257597760

Khách vãng lai đã xóa
Minh Tú
21 tháng 9 2021 lúc 10:29

ai đúng k hết nha

Khách vãng lai đã xóa
Hoàng Khắc Trung
21 tháng 9 2021 lúc 10:41

Let S be the set of given digits: S = {0;1; 2; 3; 4; 5; 6; 7}.

Consider all 5-digit numbers abcde whose digits are selected from set S and are distinct; a can be 0.

There are 8 ways to select a from set S.

There are 7 ways to select b from set S such that b differs from a.

There are 6 ways to select c from set S such that c differs from a, b.

There are 5 ways to select d from set S such that d differs from a, b, c.

There are 4 ways to select e from set S such that e differs from a, b, c, d.

Thus, there are 8 x 7 x 6 x 5 x 4 = 6720 numbers abcde with 5 distinct digits selected from set S.

Since all digits of set S have equal chances of being selected (a can be 0), each digit appears 6720 : 8 = 840 times as a, b, c, d or e.

The sum of all numbers abcde where a can be 0 is:

840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)

Now consider all numbers abcde where a = 0. These are basically all numbers bcde where b, c, d, e are distinct digits selected from set T = {1; 2; 3; 4; 5; 6; 7}.

There are 7 ways to select b from set T.

There are 6 ways to select c from set T such that c differs from b.

There are 5 ways to select d from set T such that d differs from b, c.

There are 4 ways to select e from set T such that e differs from b, c, d.

Thus, there are 7 x 6 x 5 x 4 = 840 numbers bcde with 4 distinct digits selected from set T.

Since all digits of set T have equal chances of being selected, each digit appears 840 : 7 = 120 times as b, c, d or e.

The sum of all numbers bcde is:

120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)

From (1) and (2) it follows that the sum of all numbers abcde that satisfy the given conditions is:

261330720 – 3732960 = 257597760

Khách vãng lai đã xóa