nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
nêu cách giải nha
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
nêu cách giải nha
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
nêu cách giải nha
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
nếu n là 1 số tự nhiên không chia hết cho 3 thì số dư của n^2 khi chia cho 3 là
n^2 khi chia cho 3 sẽ có số dư là 1
Nếu n là một số tự nhiên không chia hết cho 3 thì số dư của n2 khi chia cho 3 là bao nhiêu ???
Các bạn nhớ ghi cách giải giúp tớ nhé !!!!
xin lỗi mình vội
mình chỉ có thể nói là ra 1
xin lỗi nha
mih chỉ nói là ra 1 thôi
mong bạn thông cảm
1. Tìm số tự nhiên nhỏ hơn 400 mà khi chia số đó cho 2,3,4,5 và 6 đều dư 1 nhưng khi chia cho 7 thì không còn dư.
2. Tìm một số tự nhiên nhỏ hơn 200, biết rằng số đó không chia hết cho 2, chia cho 3 dư 1, chia cho 5 thiếu 1 và chia hết cho 7.
Viết cách giải ra giúp mình nha!
Bài 1: Gọi số cần tìm là a. \(\left(a\in N,a< 400\right)\)
Khi đó ta có a - 1 chia hết cho 2, 3, 4, 5 và 6.
Nói cách khác a - 1 chia hết BCNN(2,3,4,5,6) = 60
Vậy a có dạng 60k + 1.
Do a < 400 nên \(60k+1< 400\Rightarrow k\le6\)
Do a chia hết 7 nên ta suy ra a = 301
Bài 2.
Do số cần tìm không chia hết cho 2 và chia 5 thiếu 1 nên phải có tận cùng là 9.
Số đó lại chia hết cho 7 nên ta tìm được các số là :
7.7 = 49 (Thỏa mãn)
7.17 = 119 (Chia 3 dư 2 - Loại)
7.27 = 189 (Chia hết cho 3 - Loại)
7.37 = 259 ( > 200 - Loại)
Vậy số cần tìm là 49.
a chia cho 4, 5, 6 dư 1 nên (a - 1) chia hết cho 4, 5, 6
=> (a - 1) là bội chung của (4,5,6)
=> a - 1 = 60n => a = 60n+1 với 1 ≤ n < (400-1)/60 = 6,65
mặt khác a chia hết cho 7 => a = 7m
Vậy 7m = 60n + 1
có 1 chia 7 dư 1
=> 60n chia 7 dư 6
mà 60 chia 7 dư 4
=> n chia 7 dư 5
mà n chỉ lấy từ 1 đến 6 => n = 5
a = 60.5 + 1 = 301
1) Khi chia số tự nhiên a cho 96, được số dư là 24. Hỏi số a có chia hết cho 6. cho 18 không ?
2) Cho số tự nhiên không chia hết cho 5 và khi chia chúng cho thì được các số dư khác nhau. Chứng minh rằng tổng chủa 5 đó chia hết cho 5
3)chứng tỏ rằng 1 số khi chia cho 60 dư 45 thì hia hết cho 15 mà không chia hết cho 30
4)Chứng minh rằng không có số tự nhiên nào chia cho 21 dư 5 còn chia 9 dư 1
5)Tìm số tự nhiên n để:
a)n+4 chia hết n
b)3n+5 chia hết cho n
c)27-4n chia hết cho n
(Các bạn giúp mình với, làm bài nào cũng được)
d)n+6 chia hết cho n+1
e)2n+3 chia hết cho n-2
d) Ta có: n + 6 chia hết cho n+1
n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
e) Ta có: 2n+3 chia hết cho n-2 (1)
n-2 chia hết cho n-2 => 2(n-2) chia hết cho n-2 => 2n - 4 chia hết cho n-2 (2)
Từ (1) và (2) => [(2n+3) - (2n-4)] chia hết cho n-2
=> (2n+3 - 2n +4) chia hết cho n-2
=> 7 chia hết cho n-2
Sau đó xét các trường hợp tương tự như phần d.
d) Ta có: n + 6 chia hết cho n+1n+1 chia hết cho n+1
=> [(n+6) - (n+1)] chia hết cho n+1
=> (n+6 - n - 1) chia hết cho n + 1
=> 5 chia hết cho n+1
=> n+1 thuộc { 1; 5 }
Nếu n+1 = 1 thì n = 1-1=0
Nếu n+1=5 thì n= 5-1=4.
Vậy n thuộc {0;4}
Cmr1 số chính phương khi chia 3 thì dư 0 hoặc 1
Theo các bạn mình giải bằng cách này dc ko
Đặt n là số tự nhiên ,n^2 là số chính phương
Ta có n (n^2-1)=(n-1)n (n+1)
Mà (n-1),n ,(n+1) là 3 số tự nhiên liên tiếp và tích 3 số tự nhiên liên tiếp chia hết cho 3
Suy ra n (n^2-1)=(n-1)n (n+1)chia hết cho 3
Suy ra n ( n^2-1)chia hết cho 3
Suy ra n chia hết cho 3 hoặc n^2 -1 chia hết cho 3
Suy ra n^2 chia 3 dư 0 hoặc n^2chia 3 dư 1
Mình ko bít mình làm. Đúng hay ko nữa
I don't now
or no I don't
..................
sorry
Bài 1: Tìm số tự nhiên n sao cho:
a) 2n + 8 chia hết cho n + 1
b) 8n + 7 chia hết cho 4n + 1
c) 3n + 9 chia hết n + 5
d) n + 14 chia hết cho 2n + 3
Bài 2: Chứng minh rằng: Tích của hai số nguyên liên tiếp thì chia hết cho 2
Bài 3: Cho 2 số tự nhiên không chia hết cho 3, khi chia cho 3 được những số dư khác nhau. Chứng minh rằng tổng của chúng chia hết cho 5.
Bài 4: Cho 4 số tự nhiên không chia hết cho 5, khi chia cho 5 được những số dư khác nhau. Chứng minh rằng tổng của chúng chia hết cho 5.
giải nhanh hộ mình nha
giải chi tiết nhé