Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phùng Thị Minh Nguyệt
Xem chi tiết
Đặng Kiều Trang
Xem chi tiết
Không Tên
29 tháng 7 2018 lúc 10:08

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+....+\frac{1}{2^{100}}\)

\(\Rightarrow\)\(2A=2+1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{99}}\)

\(\Rightarrow\)\(2A-A=\left(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{100}}\right)\)

\(\Rightarrow\)\(A=2-\frac{1}{2^{100}}\)

\(B=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)

\(\Rightarrow\)\(3B=3+1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{99}}\)

\(\Rightarrow\)\(3B-B=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}\right)\)

\(\Rightarrow\)\(2B=3-\frac{1}{3^{100}}\)

\(\Rightarrow\)\(B=\frac{3-\frac{1}{3^{100}}}{2}\)

Quang Phạm
Xem chi tiết
Đoàn Yến Chi
5 tháng 3 2017 lúc 18:49

B = 1 bạn nhé , đúng 100000000000% luôn

Quang Phạm
Xem chi tiết
Loan Tran
Xem chi tiết
Đặng Đôn Mạnh
Xem chi tiết
Nguyễn  Thuỳ Trang
Xem chi tiết
cuong tan
Xem chi tiết
Trương Nam Khôi Đoàn
26 tháng 9 2024 lúc 19:00

Ta có 1/n(1+2+3+...+n)

Áp dụng công thức 1+2+3+...+n =n (n+1) /2

Nên 1/n(1+2+3+...+n) =1/n[n (n+1)/2]=n (n+1) /2n

=>1+3/2+4/2+...+101/2

=1+[(2+3+4+...+101)/2)-1   (vì mình thêm vào 2/2 nên phải trừ 1)

=5150 :)))))))))

Phạm Thùy Dương
Xem chi tiết
Lê Hải Dương
3 tháng 3 2021 lúc 7:43

3850000

Khách vãng lai đã xóa