Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
aaaa
Xem chi tiết
trang ta
Xem chi tiết
Phan Minh Thiện
20 tháng 8 2020 lúc 20:36

để A là số chính phương thì

\(x^2-3x+2=m^2\left(m\in N\right)\)

\(\Leftrightarrow4\left(x^2-3x+2\right)=4m^2\)

\(\Leftrightarrow\left(2x\right)^2-12x+8=\left(2m\right)^2\)

\(\Leftrightarrow\left(2x\right)^2-2.6.x+6^2-28=\left(2m\right)^2\)

\(\Leftrightarrow\left(2x-6\right)^2-\left(2m\right)^2=28\)

\(\Leftrightarrow\left(2x-6-2m\right)\left(2x-6+2m\right)=28\)

Vì \(x,m\in N\)nên  \(\left(2x-6-2m\right)\le\left(2x-6+2m\right)\)

\(\Leftrightarrow\hept{\begin{cases}\hept{\begin{cases}2x-6-2m=1\\2x-6+2m=28\end{cases}}\\\hept{\begin{cases}2x-6-2m=2\\2x-6+2m=14\end{cases}}\\\hept{\begin{cases}2x-6-2m=4\\2x-6+2m=7\end{cases}}\end{cases}}\Leftrightarrow\hept{\begin{cases}\hept{\begin{cases}x=\frac{41}{4}\left(loại\right)\\m=\frac{27}{4}\left(loại\right)\end{cases}}\\\hept{\begin{cases}x=4\left(chọn\right)\\m=0\left(chọn\right)\end{cases}}\\\hept{\begin{cases}x=\frac{11}{4}\left(loại\right)\\m=-\frac{9}{4}\left(loại\right)\end{cases}}\end{cases}}\)

Khách vãng lai đã xóa
Phan Minh Thiện
20 tháng 8 2020 lúc 20:39

bị lỗi mạng nha bạn ơi, phải đặt trường hợp nữa và chỉ chọn x=4

câu b thì cũng làm tương tự

Khách vãng lai đã xóa
Mercury
Xem chi tiết
Quân Nguyễn Minh
Xem chi tiết
Quân Nguyễn Minh
Xem chi tiết
Hồ Thị Thu Thảo
6 tháng 7 2015 lúc 21:07

c) Đặt \(n^2+81=a^2\)

\(\Rightarrow81=a^2-n^2\)

\(\Rightarrow81=\left(a-n\right)\left(a+n\right)\)

Vì \(n\in N\Rightarrow a-n\in N;a+n\in N\)

\(\Rightarrow\left(a-n\right)

Tiểu Thiên Thiên
6 tháng 7 2015 lúc 21:07

c, Đặt n2 + 81= k2

=> 81 = k- n2

=> 81 = (k2+kn) - (kn+n2)

=> 81 = k(k+n) - n(k+n)

=> 81 = (k-n).(k+n) (1)

Vì k-n và k+n là 2 số chẵn liên tiếp  (2)

mà 81 là số lẻ (3)

Từ (1),(2) và (3) => vô lý 

Vậy k tồn tại n thuộc N để bt là SCP

mk chỉ bk làm câu này thôi!

 

Kudo shinichi
Xem chi tiết
Nguyễn Anh Quân
3 tháng 11 2017 lúc 15:07

Bạn ơi bài này phải cho thêm điều kiện n thuộc Z 

Đặt n^2+2006 = k^2 ( k thuộc N sao)

<=> -2006 = n^2-k^2 = (n-k).(n+k)

<=> n-k thuộc ước của -2006 ( vì n thuộc Z , k thuộc N sao nên n-k và n+k đểu thuộc Z)

Mà k thuộc N sao nên n-k < n+k

Từ đó, bạn tự giải bài toán nhưng nhớ kết hợp cả điều kiện n-k<n+k 

pham_duc_lam
3 tháng 11 2017 lúc 15:08

Kết quả hình ảnh cho hình ảnh luffyđẹp chưa?

Sakuraba Laura
2 tháng 12 2017 lúc 5:04

Vì n2 là số chính phương

\(\Rightarrow\) n2 chia cho 4 dư 0 hoặc 1

Mà 2006 chia cho 4 dư 2

\(\Rightarrow\) n2 + 2006 chia cho 4 dư 2 hoặc 3

\(\Rightarrow\) n2 + 2006 không là số chính phương (vì số chính phương chia cho 4 dư 0 hoặc 1)

\(\Rightarrow\) Không có số n thỏa mãn đề bài.

Nikki 16
Xem chi tiết
Yuu Shinn
29 tháng 10 2018 lúc 19:14

2) Vì p là số nguyên tố nên ta xét các trường hợp sau:

a) Với p = 2 thì p + 10 = 2 + 10 = 12 là hợp số (loại), tương tự với p + 20 cũng là hợp số.

Với p = 3 thì p + 10 = 3 + 10 = 13 là số nguyên tố (nhận); p + 20 = 3 + 20 = 23 là số nguyên tố (nhận)

Vì p là số nguyên tố và p > 3 nên p có dạng 3k + 1; 3k + 2

Với p = 3k + 1 => p + 10 = 3k + 1 + 10 = 3k + 11

Châu Anh
Xem chi tiết
Huỳnh Thị Minh Huyền
9 tháng 12 2015 lúc 18:08

Giả sử n^2 + 2006 = m^2 (m,n la số nguyên) 
Suy ra n^2 - m^2 =2006

<==> ( n - m )( n + m ) = 2006 
Gọi a = n - m, b = n + m ( a,b cũng là số nguyên) 
Vì tích của a và b bằng 2006 la một số chẵn, suy ra trong 2 số a và b phải có ít nhất 1 số chẵn (1) 
Mặt khác ta có: a + b = (n - m) + (n + m) = 2n là 1 số chẵn

==> a và b phải cùng chẵn hoặc cùng lẻ(2) 
Từ (1) và (2) suy ra a và b đều là số chẵn 
Suy ra a = 2k , b= 2l ( với k,l là số nguyên) 
Theo như trên ta có a.b = 2006 hay 2k.2l = 2006 hay 4.k.l = 2006 
Vì k,l là số nguyên nên suy ra 2006 phải chia hết cho 4 ( điều này vô lý, vì 2006 không chia hết cho 4) 
Vậy không tồn tại số nguyên n thỏa mãn đề bài đã cho.(đpcm)

Vô danh đây vip
Xem chi tiết
Kẻ Dối_Trá
29 tháng 7 2016 lúc 8:13

Với n = 1 thì 1! = 1 = 1² là số chính phương . 
Với n = 2 thì 1! + 2! = 3 không là số chính phương 
Với n = 3 thì 1! + 2! + 3! = 1+1.2+1.2.3 = 9 = 3² là số chính phương 
Với n ≥ 4 ta có 1! + 2! + 3! + 4! = 1+1.2+1.2.3+1.2.3.4 = 33 còn 5!; 6!; …; n! đều tận cùng bởi 0 do đó 1! + 2! + 3! + … + n! có tận cùng bởi chữ số 3 nên nó không phải là số chính phương . 
Vậy có 2 số tự nhiên n thỏa mãn đề bài là n = 1; n = 3.