Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thanh Bình
Xem chi tiết
mimi
Xem chi tiết
Khánh Vy
15 tháng 10 2018 lúc 13:28

Gọi A là số chính phương A = n2 (n ∈ N)

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

bạn à câu C hình như bạn viết thiếu đề

Nguyễn Minh Quang
Xem chi tiết
lê đức anh
7 tháng 10 2021 lúc 13:57

 Các số chính phương chỉ có thể tận cùng là : 0,1,4,5,6,9

Mà các số này chia 5 chỉ dư 0,1,4

-> đpcm

Khách vãng lai đã xóa
Nguyễn Minh Quang
Xem chi tiết
nghiêm hữu hưng
Xem chi tiết
KAl(SO4)2·12H2O
22 tháng 11 2017 lúc 21:12

 Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1

Việc còn lại là của bạn

Nguyễn Anh Quân
22 tháng 11 2017 lúc 21:13

Gọi số đó có dạng : a^2 (a thuộc N)

Nếu a chia hết cho 3 => a^2 chia hết cho 3

Nếu a=3k+1 (k thuộc N) => a^2 = 9k^2+6k+1 chia 3 dư 1

Nếu a=3k+2 thì a^2 = 9k^2+12k +4 chia 3 dư 1

Vậy a^2 chia 3 dư 0 hoặc 1

Nếu a =2q ( q thuộc N ) => a^2 = 4q^2 chia hết cho 4

Nếu a=2q+1 thì a^2 = 4q^2+4q+1 chia 4 dư 1

Vậy a^2 chia 4 dư 0 hoặc 1

=> ĐPCM

k mk nha

nghiêm hữu hưng
23 tháng 11 2017 lúc 22:18

cảm ơn bạn nha

VICTORY_Trần Thạch Thảo
Xem chi tiết
0o0_ Nguyễn Xuân Sáng _0...
7 tháng 7 2016 lúc 20:05

 Gọi số chính phương đã cho là a^2 (a là số tự nhiên) 
* C/m a^2 chia 3 dư 0 hoặc dư 1 
Với số tự nhiên a bất kì ta có: a chia hết cho 3, chia 3 dư 1 hoặc chia 3 dư 2. 
- Nếu a chia hết cho 3 => a = 3k (k là số tự nhiên) 
=> a^2 = (3k)^2 = 9k^2 chia hết cho 3 hay chia 3 dư 0 
- Nếu a chia 3 dư 1 => a = 3k +1 => a^2 = (3k+1)^2 = 9k^2 + 6k +1 ; số này chia 3 dư 1 
- Nếu a chia 3 dư 2 => a = 3k+2 => a^2 = (3k+2)^2 = 9k^2 + 12k + 4; số này chia 3 dư 1. 
Vậy số chính phương chia cho 3 dư 0 hoặc 1 
* Với số chính phương chia 4 dư 0 hoặc 1 bạn làm tương tự nhé. 
* Mình nghĩ phải là số chính phương lẻ chia 8 dư không bạn? 
Chắc làm như trên cũng ra thôi nhưng dài lắm, mình thử làm thế này bạn xem có được không nhé: 
a^2 lẻ <=> a lẻ. Đặt a = 2k+3 (k là số tự nhiên) 
=> a^2 = (2k + 3)^2 = 4k^2 + 12k + 9 = 4k(k+3k) + 8 + 1 
- Nếu k lẻ => k + 3k chẵn hay k+3k chia hết cho 2 => 4k(k+3k) chia hết cho 8 => a^2 chia 8 dư 1 
- Nếu k chẵn hay k chia hết cho 2 => 4k(k+3) chia hết cho 8 => a^2 chia 8 dư 1. 
Đó là cách làm của mình có j không ổn mọi người bổ sung giúp mình nhé. Chúc bạn học giỏi!

nangcongchuabuongbinh
9 tháng 11 2017 lúc 20:34

bai nay de ma dau co kho gi dau 

Nguyễn Minh Quang
Xem chi tiết
xử nữ đáng yêu
Xem chi tiết
Khánh Vy
16 tháng 10 2018 lúc 11:48

a)Xét các trường hợp:

n= 3k (k ∈ N) ⇒ A = 9k2 chia hết cho 3

n= 3k 1  (k ∈ N) A = 9k2  6k +1 chia cho 3 dư 1

Vậy số chính phương chia cho 3 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 3 và số dư trong phép chia cho 3 .

b)Xét các trường hợp

n =2k (k ∈ N) ⇒ A= 4k2, chia hết cho 4.

n= 2k+1(k ∈ N) ⇒ A = 4k2 +4k +1

= 4k(k+1)+1,

chia cho 4 dư 1(chia cho 8 cũng dư 1)

vậy số chính phương chia cho 4 chỉ có thể có số dư bằng 0 hoặc 1.

+Ta đã sử tính chia hết cho 4 và số dư trong phép chia cho 4 .

     Chú ý: Từ bài toán trên ta thấy:

-Số chính phương chẵn chia hết cho 4

-Số chính phương lẻ chia cho 4 dư 1( chia cho 8 cũng dư 1).

c) Các số 19932,19942 là số chính phương không chia hết cho 3 nên chia cho 3 dư 1,còn 19922 chia hết cho 3.

Vậy  M chia cho 3 dư 2,không là số chính phương.

Các số 19922,19942 là số chính phương chẵn nên chia hết cho 4.

Các số 19932,19952 là số chính phương lẻ nên chia cho 4 dư 1.

Vậy số N chia cho 4 dư 2,không là số chính phương.

Real Madrid
Xem chi tiết
Nguyễn Thị Bảo Ngọc
9 tháng 12 2015 lúc 18:42

CHTT

Do một số chia cho 3 có số dư là 0, 1, 2 nên đặt các số là 3x, 3x+1 và 3x+2.

Ta có: (3x)2 = 9x2 chia hết cho 3

           (3x + 1)2 = 9x2 + 6x +1 chia 3 dư 1

           (3x + 2)2 = 9x2 + 12x + 4 chia 3 dư 1

Vậy một số chính phương chia cho 3 hoặc chia hết hoặc dư 1.

Real Madrid
9 tháng 12 2015 lúc 18:45

Sao các bạn trả lời giống nhau vậy!