B=998+999x1000/999x1001-1
TÍNH NHANH
A=9,1+10,2+11,3+....+16,8+17,9 / (1+1+2+3+5+......+55)-21,5
B= 998+999x1000 / 999X1001-1
CÁC CẬU HỘ MÌNH SỚM NHÉ. AI TRẢ LỜI ĐÚNG VÀ TẮT NHẤT MÌNH SẼ TÍCH CHO NHÉ
Tính nhanh :
998 + 999 x 1000/999x1001-1
998 + 999 x 1000/999x1001-1
= 998 + {[( 999x1000) /999]x1001)-1
=1001997
998 + 999 x 1000 / 999 x 1001 - 1
= 998 + ([(999 x 1000 ) / 999] x 1001 ) - 1
= 1001997
= (999-1+999*1000)/[999*(1000+1)-1]=
= (999*1000+999-1)/(999*1000+999-1)=
=1
1/3x5+1/5x7+1/7x9+...+1/999x1001
A=(1235x2469-1234)/(1234x2469+1235)
B=4002/(1000x1002-999x1001)
Ta có \(A=\frac{1235.2469-1234}{1234.2469+1235}=\frac{\left(1234+1\right).2469-1234}{1234.2469+1235}=\frac{1234.2469+2469-1234}{1234.2469+1235}=\frac{1234.2469+1235}{1234.2469+1235}=1\)
\(B=\frac{4002}{1000.1002-999.1001}=\frac{4002}{\left(1001-1\right)\left(1001+1\right)-\left(1000-1\right)\left(1000+1\right)}=\frac{4002}{\left(1001^2-1\right)-\left(1000^2-1\right)}=\frac{4002}{1001^2-1-1000^2+1}\)
\(B=\frac{4002}{1001^2-1000^2}=\frac{4002}{\left(1001-1000\right)\left(1001+1000\right)}=\frac{4002}{2001}=2\)
Do đó: \(B>A\) ( vì \(2>1\) )
a, 1/997*998+1/998*999+1/999*1000+1
b, 1/997*998+1/998*999+1/999
1/1x2 + 1/2x3 + 1/3x4 + ...... + 1/999x1000 + 1 = ......?
1/1.2+1/2.3+1/3.4+...+1/999.1000+1
=1-1/2+1/2-1/3+1/3-1/4+...+1/998-1/999+1/999-1/1000+1
=1-1/1000+1
=999/1000+1
=1999/1000
Chuẩn ko cần chỉnh
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{999\times1000}+1\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{999}-\frac{1}{1000}+1\)
\(=1-\frac{1}{1000}+1\)
\(=\frac{999}{1000}+1\)
\(=\frac{1999}{1000}\)
1/1x2+1/2x3+1/3x4+...+1/999x1000+1
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.100}+1\)
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{100}\)+1
=\(1-\frac{1}{100}\)+1
=\(\frac{99}{100}+1\)
=\(\frac{199}{100}\)
sorry mk lộn bài này mới đúng :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{999.1000}\)+1
=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}+1\)
=\(1-\frac{1}{1000}+1\)
=\(\frac{999}{1000}+1\)
=\(\frac{1999}{1000}\)
1/1x2 +1/2x3+1/3x4+.....+1/999x1000+1
1999/1000
tớ gặp bài này rồi, nhớ k nhé
Tính tổng S=9x11+99x101+999x1001+9999x10001+99999x100001