x/2=y/5 va x+y=35
x+2/y+10=1/5 va y-3x=2
x/4=y/5 va 2x-y=15
Ti le thuc x y ti le voi 2 3 va x+y =-15
X÷y=7÷20 y÷z=7÷3 va y-x-z=62
3/y=7/x va x+16=y
X y ti le voi 5;3 va x^2-y^2=4
5x=8y=20z va x-y-z=3
3x=2y;7y =5z va 2x+y-z=-28
2x/3=3y/4=4z/5 va 3x-4y+5z=65
a, x/5=y/3 và 5x-3y=8
b, x/3=y/4 ; y/5 = z/7 va 2x+ 3y-z=124
c, 3x=2y ; 7y=5z va x-y+z=32
đ, 2x/3=3y/4=4z/5 và x+y+z=49
e, 2x=3y=5z va x+y-z=95
f, x-1/2=y-2/3=z-3/4 va 2x+3y-z=50
Bạn áp dụng tính chất dãy tỉ số bằng nhau đi :)
ap dung tinh chat day ti so = nhau nhoaaaaaaaaaaaaaaaa
tk mk nhe
x/2=y/5 ; x/4=z/3 va x+y-2z = 8
2x/3=y/5 va y-x= 84
3x=4y=5z va x+y-z =23
a ) x/2=y/5 suy ra x/4=y/10
x/4=z/3 suy ra x/4=2z/3
suy ra x/4=y/10=2z/3=x+y-2z/4+10-6=8/8=1
x/4=1 suy ra x=1*4=4
y/10=1 suy ra y=10*1=10
z/3=1 suy ra z=3*1=3
b2:tìm x,y,z
a) x/3=y/4=z/5 va 2x+3y+5z=86
b) x/3=y/4; y/6=z/8 va 3x-2y-z=13
c) x/2=y'3=z/4 va xy+yz+zx=104
b3:tìm x,y,z
a)x/3=y/7=z/2 va 2x^2 +y^2 +3z^2=316
b)x:y:z=2:5:7 va 3x+2y-z=27
2.
a) \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\)
\(\Rightarrow x=6;y=8;z=10\)
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{18}=\frac{y}{24}\)( 1 )
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{24}=\frac{z}{32}\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{x}{18}=\frac{y}{24}=\frac{z}{32}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{18}=\frac{y}{24}=\frac{z}{32}=\frac{3x-2y-z}{54-48-32}=\frac{13}{-26}=\frac{-1}{2}\)
\(\Rightarrow x=-9;y=-12;z=-16\)
3.
a) \(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{3}=\frac{y}{7}=\frac{z}{2}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
\(\Rightarrow x=12;y=28;z=8\)
b) x : y : z = 2 : 5 : 7
\(\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)'
\(\Rightarrow x=6;y=15;z=21\)
2) a, \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{2x}{6}=\frac{3y}{12}=\frac{5z}{25}=\frac{2x+3y+5z}{6+12+25}=\frac{86}{43}=2\) (theo t/c dãy tỉ số bằng nhau)
=> x = 2.3 = 6 ; y = 2.4 = 8; z = 2.5 = 10
b, \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}\)
\(\frac{y}{6}=\frac{z}{8}\Rightarrow\frac{y}{12}=\frac{z}{16}\)
\(\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{16}\Rightarrow\frac{3x}{27}=\frac{2y}{24}=\frac{z}{16}=\frac{3x-2y-z}{27-24-16}=\frac{13}{-13}=-1\) (theo t/c của dãy tỉ số bằng nhau)
=> x=(-1).9=-9 ; y=(-1).12=-12 ; z=(-1).16=-16
c, Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\Rightarrow x=2k;y=3k;z=4k\)
Ta có: xy+yz+zx=104
=> (2k)(3k) + (3k)(4k) + (4k)(2k) = 104
=> 6k2 + 12k2 + 8k2 = 104
=> k2(6+12+8) = 104
=> 26k2 = 104
=> k2 = 4
=> k = ±2
Với k = 2 thì \(\hept{\begin{cases}x=2.2=4\\y=2.3=6\\z=2.4=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}x=2.\left(-2\right)=-4\\y=\left(-2\right).3=-6\\z=\left(-2\right).4=-8\end{cases}}\)
3) a, Đặt k=x/3=y/7=z/2
\(k=\frac{x}{3}=\frac{y}{7}=\frac{z}{2}\Rightarrow k^2=\frac{x^2}{9}=\frac{y^2}{49}=\frac{z^2}{4}=\frac{2x^2}{18}=\frac{y^2}{49}=\frac{3z^2}{12}=\frac{2x^2+y^2+3z^2}{18+49+12}=\frac{316}{79}=4\)
=> k2 = 4 => k = ±2
Với k = 2 thì \(\hept{\begin{cases}\frac{x}{2}=2\Rightarrow x=4\\\frac{y}{3}=2\Rightarrow y=6\\\frac{z}{4}=2\Rightarrow z=8\end{cases}}\)
Với k = -2 thì \(\hept{\begin{cases}\frac{x}{2}=-2\Rightarrow x=-4\\\frac{y}{3}=-2\Rightarrow y=-6\\\frac{z}{4}=-2\Rightarrow z=-8\end{cases}}\)
b, \(x:y:z=2:5:7\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{3x}{6}=\frac{2y}{10}=\frac{z}{7}=\frac{3x+2y-z}{6+10-7}=\frac{27}{9}=3\)
=> x = 2.3 = 6 ; y = 5.3 = 15 ; z = 7.3 = 21
Sửa lại bài 3a
Với k = 2 thì \(\hept{\begin{cases}x=2.3=6\\y=2.7=14\\z=2.2=4\end{cases}}\)
Với k=-2 thì \(\hept{\begin{cases}x=\left(-2\right).3=-6\\y=\left(-2\right).7=-14\\z=\left(-2\right).2=-4\end{cases}}\)
tìm x, y biết
x/4 = y/6 va x+y = 90
x/5= y/2 va 2x - 2y =44
2x = 3y va x+y = 10
b) \(\text{Ta có}:\frac{x}{5}=\frac{y}{2}\Leftrightarrow5y=2x\Leftrightarrow y=\frac{2x}{5}\)
Thay \(y=\frac{2x}{5}\)biểu thức \(2x-2y=44\).Ta được :
\(2x-2.\frac{2x}{5}=44\Leftrightarrow10x-4x=220\Leftrightarrow6x=220\Leftrightarrow x=\frac{110}{3}\)
Với \(x=\frac{110}{3}\Rightarrow y=\frac{\frac{2.110}{3}}{5}=\frac{44}{3}\)
c) \(2x=3y\Rightarrow x=\frac{3y}{2}\)
Thay vào biểu thức \(x+y=10\), ta được :
\(\frac{3y}{2}+y=10\Leftrightarrow3y+2y=20\Leftrightarrow5y=20\Leftrightarrow y=4\)
\(\Rightarrow x=\frac{3.4}{2}=6\)
\(\frac{x}{4}=\frac{y}{6}=\frac{x+y}{4+6}=\frac{90}{10}=9\)
\(\Rightarrow\hept{\begin{cases}x=9\cdot4=36\\y=9\cdot6=63\end{cases}}\)
đây là mình làm tắt.
ở trường chắc bạn học dạng này rồi đúng ko?
hai phần kia làm tương tự bạn nhé!
a, \(\text{Ta có : }\frac{x}{4}=\frac{y}{6}\Leftrightarrow6x=4y\Leftrightarrow x=\frac{4y}{6}\)
Thay \(x=\frac{4y}{6}\)vào biểu thức \(x+y=90\), ta được :
\(\frac{4y}{6}+y=90\Leftrightarrow4y+6y=540\Leftrightarrow10y=540\Leftrightarrow y=54\)
Với \(y=54\Rightarrow x=\frac{4.54}{6}=36\)
Vậy x = 36 ; y = 54
a) x/5=y/3 va x+y= -48
b) x/-3 = y/2 va 2x-5y = -32
c) x/4=y/-5 va -3x + 2y=55
d) 5x=2uy ; 3uy=5z va x+y+z =-72
Đăng ít 1 thôi, nhiều quá bon nó không giải đâu
Tim x,y,z biet:
a) x/3 = y/-4 = z/-5 va 2x + 3y - 4z = 70
b) x/3 = y/2; x/5 = 2/7 va x+y+z = 184
c) x/5 = y/-7 ; y/4 = z/15 va x+3y-4z=18
d) 2x/3 = 3y/4 = 4z/5 va x+y+z=49
e) x/y = 3/7 va x.y = 84
Help me, pleass!!
Hoi dong ARMY dung vo tam luot qua nhe!!
Ai nhanh nhat to tick cho!!😘
a, x/3 = y/-4 = z/-5
=> 2x/6 = 3y/-12 = 4z/-20
theo đề bài áp dụng tính chất của dãy tỉ số bằng nhau ta có :
2x/6 = 3y/-12 = 4z/-20 = 2x + 3y - 4z/6 + (-12) - (20) = 70/14 = 5
=> x = 5.3 = 15
y = 5.(-4) = -20
z = 5.(-5) = -25
tim x y z x/2=y/3 y/4=z/5 va x^2-y^2=16
3x/8=3y/6y=3z/216 va 2x^2+2y^2-z^2=1
a) \(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{4}=\frac{z}{5}\)và x2-y2=16
Ta có: \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{12}\)(1)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)(2)
Từ (1) và (2) => \(\frac{x}{4}=\frac{y}{12}\)
=> \(\frac{x}{4}=\frac{y}{12}\Rightarrow\frac{x^2}{16}=\frac{y^2}{154}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x^2}{16}=\frac{y^2}{154}=\frac{x^2-y^2}{16-154}=\frac{16}{-138}=\frac{8}{69}\)
Đến đây làm nốt
should a person làm sai rồi, cách làm thì đúng nhưng nhân sai thì phải, cẩn thận nha =)
\(\frac{x}{2}=\frac{y}{3}=>\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}=>\frac{y}{12}=\frac{z}{15}\)
\(=>\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=>\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}\)
áp dụng t/c dãy tỉ sô bằng nhau ta có:
\(\frac{x^2}{64}=\frac{y^2}{144}=\frac{z^2}{225}=\frac{x^2-y^2}{64-144}=\frac{16}{-80}=-\frac{1}{5}\)
\(x^2=\frac{1}{5}.64=\frac{64}{5}=>x=\sqrt{\frac{64}{5}}\)
tương tự y và z nha
a] x/2=y/3 va 2x-3y=1
b]3x/2=4x/5 va x+y=1
\(\frac{x}{2}=\frac{y}{3}\)
\(\Rightarrow\frac{2x}{4}=\frac{3y}{9}\)
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x-3y}{4-9}=\frac{1}{-5}\)
tự lm tp
\(a)\frac{x}{2}=\frac{y}{3}\) và \(2x-3y=1\)
Ta có: \(\frac{x}{2}=\frac{2x}{4};\frac{y}{3}=\frac{3y}{9}\)
Mà: \(\frac{x}{2}=\frac{y}{3} \implies \frac{2x}{4}=\frac{3y}{9}\)
Áp dụng tính chất dãy các tỉ số bằng nhau ta có:
\(\frac{2x}{4}=\frac{3y}{9}=\frac{2x-3y}{4-9}=\frac{1}{-5}\)
Suy ra: \(\frac{x}{2}=\frac{1}{-5}\implies x=\frac{1.2}{-5}\implies x= \frac{-2}{5}\)
\(\frac{y}{3}=\frac{1}{-5}\implies y=\frac{1.3}{-5}\implies y=\frac{-3}{5}\)