giá trị nhỏ nhất của biểu thức A=|2x-7|+5-2x
Gía trị nhỏ nhất của biểu thức A=|2x-7|+5-2x
Vì | 2x - 7 | ≥ 0 ∀ x ∈ Z
Để | 2x - 7 | + 5 - 2x min <=> 2x - 7 = 0 => x = 7/2
=> min A = 5 + 2.7/2 = 12
Vậy min A = 12 tại x = 7/2
Gía trị nhỏ nhất của biểu thức : 3|1-2x|-5 là
Gía trị nhỏ nhất của biểu thức A = |2x+2015|-3 là
a/Gía trị nhỏ nhất của biểu thức A= |3x+4|+|-12|-3
b/giá trị nhỏ nhất của biểu thức A= |x+2|+1/3.|3x+6|+|x-5|+|x-7|
Giá trị nhỏ nhất của biểu thức: A = |2x + 1/5| + |2x + 1/6| + |2x + 1/7| là....?
4 Tìm giá trị nhỏ nhất của biểu thức:
A = | 2x - 5 | + | 7 - 2x |
\(A=\left|2x-5\right|+\left|7-2x\right|\)
Có \(\left|2x-5\right|\ge2x-5\)
\(\left|7-2x\right|\ge7-2x\)
=) \(\left|2x-5\right|+\left|7-2x\right|\ge\left(2x-5\right)+\left(7-2x\right)=2x-5+7-2x\)
=) \(A=\left|2x-5\right|+\left|7-2x\right|\ge2x-2x-5+7=2\)
Để \(A\)nhỏ nhất =) \(A=2\)
=) Dấu " = " xảy ra khi \(2x-5\ge0\)=) \(2x\ge5\rightarrow x\ge\frac{5}{2}=2,5\)
và \(7-2x\ge0\)=) \(2x\le7\rightarrow x\le\frac{7}{2}=3,5\)
=) \(2,5\le x\le3,5\)( Với \(x\in Q\))
Vậy với \(2,5\le x\le3,5\)thì \(A\)có giá trị nhỏ nhất = 2
1. Giá trị lớn nhất của -17- (x-3)^2
2.Giá trị nhỏ nhất của biểu thức A= x(x+1) +3/2
3.Giá trị lớn nhất của biểu thức A = -2x^2 +5 -5
4.Giá trị nhỏ nhất của 3x^2 +2x +28/3
5.Giá trị của x để x^2 -48x +65 đạt giá trị nhỏ nhất
6.GIá trị của x để biểu thức B=3 - x^2 +2x
7.Giá trị của x để 3(2x +9)^2 -1 đạt giá trị nhỏ nhất
8.Hệ số của x trong khai triển của đa thức (1/2x +2 )^2
Ai giúp mình với !
\(1.\)
\(-17-\left(x-3\right)^2\)
Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)
\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)
Dấu '' = '' xảy ra khi:
\(\left(x-3\right)^2=0\)
\(\Leftrightarrow x-3=0\)
\(\Leftrightarrow x=3\)
Vậy \(Max=-17\)khi \(x=3\)
\(2.\)
\(A=x\left(x+1\right)+\frac{3}{2}\)
\(A=x^2+x+\frac{3}{2}\)
\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)
\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)
Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)
\(5.\)
\(x^2-48x+65\)
\(=\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\left(x-24\right)^2\ge0\)với \(\forall x\)
\(\Leftrightarrow\left(x-24\right)^2-511\ge-511\)với \(\forall x\)
Vậy \(Max=-511\)khi \(x=24\)
GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC A=|2x+1/5|+|2x+1/6|+|2x+1/7| la................
Tìm x sao cho:
a) Gía trị của biểu thức 2x - 5 không âm ;
b) Gía trị của biểu thức -3x không lớn hơn giá trị của biểu thức -7x + 5.
a x lớn hơn hoặc bằng 5/2
b, x nhỏ hơn hoặc bằng 5/4
ko bt đúng ko nha bn