Tìm giá trị của a và b, biết \(\frac{5}{a}-\frac{b}{3}=\frac{1}{6}\)
cho biết : A= \(\left(\frac{1}{x+1}-\frac{3}{x^3+1}+\frac{3}{x^2-x+1}\right).\frac{3x^2-3x+3}{\left(x+1\right)\left(x+2\right)}-\frac{2x-2}{x+2}\)
a, tìm đkxđ của A và rút gọn A
b, tính giá trị của A khi x=3
c, tìm giá trị nguyên của x để A có giá trị nguyên
\(\left(\frac{1}{x+1}-\frac{3}{\left(x+1\right)\left(x^2-x+1\right)}+\frac{3}{x^2-x+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1}{x^3+1}-\frac{3}{x^3+1}+\frac{3\left(x+1\right)}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
\(\left(\frac{x^2-x+1-3+3x+3}{x^3+1}\right).\frac{3\left(x^2-x+1\right)}{\left(x+1\right)\left(x+2\right)}-\frac{2\left(x-1\right)}{x+1}\)
tới đây bạn biến đổi tiếp, gõ = cái này lâu quá, gõ mathtype nhanh hơn
\(A=\left(\frac{x}{x^2-4}+\frac{2}{2-x}+\frac{1}{x+2}\right)\div\)\(\left[\left(x-2\right)+\frac{10-x^2}{x+2}\right]\)
a,Rút gọn biểu thức A.
b,Tính giá trị của A tại x, biết giá trị tyệt đối của \(\left|x\right|=\frac{1}{2}\)
c,Tìm giá trị của x để A<0
*Chú ý:Cần tìm ĐKXĐ
Yêu cầu:b,Tính giá trị của A tại x, biết giá trị tuyệt đối của \(\left|x+3\right|=1\)
c,Tìm giá trị của x để A>0
1.a)Tìm giá trị của bieru thức A, biết A=\(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}(a,b,c\ne0)\)
tìm các số nguyên a và b biết 3 . giá trị tuyệt đối của a +5. giá trị tuyệt đối của b =33
1.Tìm phân số \(\frac{a}{b}\)biết rằng nếu cộng thêm cùng một số khác 0 vào tử và vào mẫu của phân số thì giá trị phân số đó không đổi.
2. Tìm 2 phân số tối giản. Biết hiệu của chúng là\(\frac{3}{196}\)và các tử tỉ lệ với 3; 5 và các mẫu tỉ lệ với 4; 7.
3. Tìm một số có 3 chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1; 2; 3.
Cho biểu thức : A=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\)
a, Rút gọn A
b,Tìm các giá trị của x để A <1
c,Tìm các giá trị nguyên của x sao cho A nguyên
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
neu de bai bai 1 la tinh x+y thi mik lam cho
đăng từng này thì ai làm cho
We have \(P=\frac{x^4+2x^2+2}{x^2+1}\)
\(\Rightarrow P=\frac{x^4+2x^2+1+1}{x^2+1}\)
\(=\frac{\left(x^2+1\right)^2+1}{x^2+1}\)
\(=\left(x^2+1\right)+\frac{1}{x^2+1}\)
\(\ge2\sqrt{\frac{x^2+1}{x^2+1}}=2\)
(Dấu "="\(\Leftrightarrow x=0\))
Vậy \(P_{min}=2\Leftrightarrow x=0\)
1. Tìm 2 số hữu tỉ a, b ( b khác 0 ) biết:
a - b = a . b = a : b
2. Tìm giá trị của x để các biểu thức sau có giá trị dương:
D= \(\frac{x^2-1}{x^2}\)
Câu hỏi : Cho \(\frac{a}{b}=\frac{2}{3}\)và a\(^3\)- b\(^3\)= 19.Tìm giá trị của a + b ?
\(\frac{a}{b}=\frac{2}{3}\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)
Mà \(\frac{a}{2}=\frac{b}{3}=\frac{a^3}{2^3}=\frac{b^3}{3^3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a^3}{2^3}=\frac{b^3}{3^3}=\frac{a^3-b^3}{2^3-3^3}=\frac{19}{8-27}=\frac{19}{-19}=-1\)
=> a = -2
b = -3
=> a + b = -2 + [-3] = -5
Tks bạn nhiều...Nhưng mà thầy mình giải rồi