Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Hải Ngọc
Xem chi tiết
Nguyễn Văn Anh Kiệt
24 tháng 1 2018 lúc 21:58
p=5=2+3=7-2
Hàn Tử Hiên
24 tháng 1 2018 lúc 21:58

5 nha bạn

2+3=5

7-2=5

✰Ťøρ ²⁷ Ťɾїệʉ Vâɳ ŇD✰
12 tháng 4 2020 lúc 15:44

Tham khảo link 

https://olm.vn/hoi-dap/detail/63924859121.html

Khách vãng lai đã xóa
Hoang Thi Minh Phuong
Xem chi tiết
le anh huyen
Xem chi tiết
Nguyễn Vân Huyền
Xem chi tiết
Tưởng Lưu
27 tháng 12 2014 lúc 7:58

Thay hướng dẫn tiếp phần b nhé: 

Giả sử cả 3 số p;q;r đều không chia hết cho 3 thế thì p2;q2;r2 chia cho 3 chỉ dư 1 ( vì p;q;r nguyên tố)

Suy ra: p+ q+ rchia hết cho 3 mà p+ q+ r>3 suy ra p+ q+ rlà hợp số ( mâu thuẫn đề bài).

Vậy điều giả sử là sai suy ra trong 3 số tồn tại ít nhất một số chia hết cho 3

Không mất tính tổng quat giả sử p<q<r\(\Rightarrow\)p chia hết cho 3 mà p là số nguyên tố suy ra p = 3

Lại có: p;q;r là 3 số nguyên tố liên tiếp nên q = 5; r=7

Vậy (p;q;r) = (3;5;7) và các hoán vị 

Nguyễn Hải Nam
28 tháng 12 2014 lúc 11:22

b, Giả sử 3 số nguyên tố p, q, r đều không chia hết cho 3 mà một số chính phương chia hết cho 3 hoặc chia 3 dư 1 

Nếu p^2, q^2, r^2 chia hết cho 3 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( là hợp số, loại )

Nếu p^2, q^2, r^2 cùng chia 3 dư 1 suy ra p^2 + q^2 + r^2 chia hết cho 3 ( loại )

Nếu trong 3 số có 1 số chia hết cho 3 suy ra p^2 + q^2 + r^2 chia 3 dư 2 ( 2 số còn lại chia 3 dư 1 ) loại vì không có số chính phương nào chia 3 dư 2

Nếu trong 3 số có 1 số chia 3 dư 1 thì p^2 + q^2 + r^2 chia 3 dư 1 ( 2 số còn lại chia hết cho 3 ) chọn

Vậy trong 3 số p , q , r phải có ít nhất 1 số chia hết cho 3

mà p, q, r là các số nguyên tố nên có 1 số nhận giá trị là 3. 

Do 1 ko là số nguyên tố nên bộ ba số nguyên tố có thể là 2 - 3 - 5 hoặc 3 - 5 - 7 

Với 3 số nguyên tố là 2 - 3 - 5 thì p^2 + q^2 + r^2 = 2^2 + 3^2 + 5^2 = 38 ( là hợp số, loại )

Vậy 3 số nguyên tố cần tìm là 3 5 7 

Nguyễn Vân Huyền đã chọn câu trả lời này

dao minh hieu
1 tháng 4 2018 lúc 21:39

Vai trò của p,q,rp,q,r là như nhau nên giả sử p>q>rp>q>r
Xét p=2p=2,ta tìm được 3 số là 2;3;5.Không thỏa
Xét p=3p=3,ta tìm được 3 số là 3;5;7 thỏa
Xét p>3p>3
Bổ đề:Mọi số nguyên tố >3>3 nến đem bình phương lên thì luôn chia 3 dư 1
thật vậy các số nguyên tố lớn hơn 3 nện có dạng 3k+13k+1 hoặc 3k+23k+2
Nếu có dạng 3k+13k+1,ta có:(3k+1)2=9k2+6k+1≡1(mod3)(3k+1)2=9k2+6k+1≡1(mod3)
Nếu có dạng 3k+23k+2,ta có (3k+2)2=9k2+12k+4≡1(mod3)(3k+2)2=9k2+12k+4≡1(mod3)
Vậy nếu p>3p>3 thì các số q,r>3q,r>3nên khi bình phương lên đều dư 1
⇒p2+q2+r2≡0(mod3)⇒p2+q2+r2≡0(mod3)
Vậy ta có (3;5;7)(3;5;7) và các hoán vị

Hồng Luyến
Xem chi tiết
Nguyễn Thị Thanh Nga
Xem chi tiết
Trần Thị Loan
21 tháng 10 2015 lúc 20:54

1) +) Nếu cả hai số nguyên tố đều > 3 => 2 số đó lẻ => tổng và hiệu của chúng là số chẵn => Loại

=> Trong hai số đó có 1 số bằng 2. gọi số còn lại là a

+) Nếu a =  3 : ta có 3 + 2 = 5 ; 3 -2 = 1, 1 không là số nguyên tố => Loại

+) Nếu  > 3 thì có thể có dạng: 3k + 1 ( k \(\in\)N*) hoặc 3k + 2 (k \(\in\) N*)

Khi a = 3k + 1 => a+ 2 = 3k + 3 = 3.(k + 1) là hợp số với k \(\in\) N* => Loại

Khi a = 3k + 2 => a + 2 = 3k + 4 ; a - 2 = 3k . 3k; 3k + 4 đều  là số nguyên tố với k = 1 . Với k > 1 thì 3k là hợp số nên Loại

Vậy a = 3. 1+ 2 = 5

Vậy chỉ có 2 số 2;5 thỏa mãn

 

Thân Khánh Hải Quân
25 tháng 4 2020 lúc 21:10

hay đó

Khách vãng lai đã xóa
HOÀNG HUỲNH NGỌC HOAN
13 tháng 11 2021 lúc 19:26

xịn quá

Khách vãng lai đã xóa
Ngô Trà My
Xem chi tiết
Le Tu
20 tháng 12 2014 lúc 18:37

vô số số

tớ tìm ra nhiều lắm

 

Nguyễn Trung Kiên
21 tháng 12 2014 lúc 9:21

so 5 vi 2+3=5 va 7-2=5

 

Lữ Vương Quý
Xem chi tiết
JOKER_Võ Văn Quốc
14 tháng 8 2016 lúc 15:08

Số 7

7=2+5=9-2

 βєsէ Ňαkɾσtɦ
14 tháng 8 2016 lúc 15:13

7-5=2

5+2=7

=> Số nguyên tố là 7 và 2

vũ thành trung
14 tháng 8 2016 lúc 15:16

5=2+3=7-2,.......

(còn rất nhiều số nguyên tố khác mà bằng tổng và hiệu 2 số nguyên tố)

Trịnh Thị Kim Hồng
Xem chi tiết
Thanh Hương Phạm
Xem chi tiết
Nguyễn Thị Hương
4 tháng 11 2015 lúc 13:05

Gọi a,b,c,d,e là các số  nguyên tố sao cho a=b+c =d-e giả sử ( b lớn hơn hoặc bằng c)                                                                               Chứng tỏ rằng c=e=2,nên b,a,d là 3 số lẻ liên tiếp ,sau đó chứng tỏ b=3                                                                                                       Số nguyên tố phải tìm là:5(5=3+2=7-2)         

chảnh chó gì cái dkm nhà...
16 tháng 3 2016 lúc 15:05

Gọi a, b, c, d, e là các số nguyên tố sao cho a=b+c = d-e giả sử ( b \(\ge\)\(\)\(c\)\()\)

Chứng tỏ rằng c = e = 2, nên b, a, d là ba số lẻ liên tiếp, sau đó chứng tỏ b = 3.

Số nguyên tố phải tìm là 5 (5 = 3 + 2 = 7 - 2).

100% vì hok rùi