\(\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{a\cdot\left(a+1\right)}\)
Bài 1:
a) \(\frac{1}{1}\cdot2+\frac{1}{2}\cdot3+\frac{1}{3}\cdot4+...+\frac{1}{n}\cdot\left(n+1\right)\)
b) \(\frac{1}{1}\cdot2\cdot3+\frac{1}{2}\cdot3\cdot4+\frac{1}{3}\cdot4\cdot5+...+\frac{1}{a}\cdot\left(a+1\right)\cdot\left(a+2\right)\)
A = \(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot.....\cdot\left(1+\frac{1}{2011\cdot2013}\right)\)
\(C=\left(1-\frac{2}{2\cdot3}\right)\cdot\left(1-\frac{2}{3\cdot4}\right)\cdot\left(1-\frac{2}{4\cdot5}\right)\cdot....\cdot\left(1-\frac{2}{99\cdot100}\right)\)
Tìm n, biết:
\(\frac{1}{1\cdot2\cdot3}+\frac{1}{2\cdot3\cdot4}+\frac{1}{3\cdot4\cdot5}+...+\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}>0,24995\)
Tìm a biết: \(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{a\cdot\left(a+1\right)}=\frac{49}{100}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\left(1:a+2a+...+10a\right)=\frac{49}{100}\)
\(\Rightarrow1-10a=\frac{49}{100}\)
\(\Rightarrow10a=1-\frac{49}{100}\)
10a=0,51
a=\(\frac{0,51}{10}=0,051\)
mk không biết có đúng không nữa thông cảm (mk chưa gặp dạng toán này ; chổ 1:... = 1 nha thay vào luôn) còn chổ ( a+2a+...10a là vd)
Chứng minh:
a, \(\left(1+\frac{1}{1\cdot3}\right)\left(1+\frac{1}{2\cdot4}\right)\left(1+\frac{1}{3\cdot5}\right)\cdot...\cdot\left(1+\frac{1}{n\left(n+2\right)}\right)< 2\)
b, \(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{5}{4}\)
\(D=\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)...\left(1+\frac{1}{99.100}\right)\)
99.101 mới đúg nhé
=\(\frac{4}{1.3}.\frac{9}{2.4}.\frac{16}{3.5}.....\frac{10000}{99.101}\)
=\(\frac{2^2.3^2.4^2......100^2}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}=\frac{\left(2.3.4....100\right).\left(2.3.4....100\right)}{\left(1.2.3....99\right).\left(3.4.5......101\right)}\)
=\(\frac{100.2}{1.101}=\frac{200}{101}\)
G=\(\frac{2^2}{1\cdot3}\cdot\frac{3^2}{2\cdot4}\cdot\frac{4^2}{3\cdot5}\cdot\cdot\cdot\cdot\frac{50^2}{49.51}\)
H=\(\left(1-\frac{1}{7}\right)\cdot\left(1-\frac{2}{7}\right)\cdot\left(1-\frac{3}{7}\right)\cdot\cdot\cdot\cdot\cdot\left(1-\frac{10}{7}\right)\)
Giúp mình vs
G = \(\frac{2^2}{1.3}\).\(\frac{3^2}{2.4}\).\(\frac{4^2}{3.5}\).....\(\frac{50^2}{49.51}\)
=> G = \(\frac{2.2}{1.3}\).\(\frac{3.3}{2.4}\).\(\frac{4.4}{3.5}\).....\(\frac{50.50}{49.51}\)
=> G = \(\frac{2.2.3.3.4.4.....50.50}{1.2.3.3.4.4.....50.51}\)
=> G = \(\frac{2.50}{1.51}\)
=> G = \(\frac{100}{51}\)
\(G=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{50^2}{49.51}\)
\(=\frac{\left(2.3.4.....50\right).\left(2.3.4.....50\right)}{\left(1.2.3.....49\right).\left(3.4.5.....51\right)}\)
\(=\frac{50.2}{51}=\frac{100}{51}\)
\(H=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{3}{7}\right).....\left(1-\frac{10}{7}\right)\)
\(=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{3}{7}\right).....\left(1-\frac{7}{7}\right).....\left(1-\frac{10}{7}\right)\)
\(=\left(1-\frac{1}{7}\right).\left(1-\frac{2}{7}\right).\left(1-\frac{3}{7}\right).....0.....\left(1-\frac{10}{7}\right)\)
\(=0\)
Tính
A=\(\left(1-\frac{1}{21}\right)\cdot\left(1-\frac{1}{28}\right)\cdot\left(1-\frac{1}{36}\right)\cdot....\cdot\left(1-\frac{1}{1326}\right)\)
B=\(\left(1+\frac{1}{1\cdot3}\right)\cdot\left(1+\frac{1}{2\cdot4}\right)\cdot\left(1+\frac{1}{3\cdot5}\right)\cdot....\cdot\left(1+\frac{1}{99\cdot101}\right)\)