so sánh 2016^2016 +1 / 2016^2015+1 và 2017^2017 +1 / 2017^2016 +1
so sánh hai phân số sau: 2015*2016-1/2015*2016 và 2016*2017-1/2016*2017
TA có :\(\frac{2015.2016-1}{2015.2016}=\frac{2015.2016}{2015.2016}-\frac{1}{2015.2016}=1-\frac{1}{2015.2016}\)
Ta có:\(\frac{2016.2017-1}{2016.2017}=\frac{2016.2017}{2016.2017}-\frac{1}{2016.2017}=1-\frac{1}{2016.2017}\)
Vì \(2015.2016< 2016.2017\)
\(\Rightarrow\frac{1}{2015.2016}>\frac{1}{2016.2017}\)
\(\Rightarrow1-\frac{1}{2015.2016}< 1-\frac{1}{2016.2017}\)
\(\Rightarrow\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
Vậy \(\frac{2015.2016-1}{2015.2016}< \frac{2016.2017-1}{2016.2017}\)
a)
Ta có: 2015/2016=1-1/2016
2016/2017=1--1/2020.So sánh 1/2016 và 1/2017 được 1/2016>1/2017
Suy ra 2015/2016<2016/2017
b) 2018/2018=1
2019/2018>1
Vậy 2018/2018 <2019/2018
CHÚC BẠN HỌC TỐT NHÉ!!!
Homie ơi, giúp mình với:
1) So sánh:
a) -2016/2017 và -2015/2016
b) 2017/-2016 và 2016/-2015
a)\(\frac{2016}{2017}< 1;\frac{2015}{2016}< 1\)
b)\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và
\(\frac{2016}{2017}< 1;\frac{2016}{2015}< 1\)
\(\frac{2017}{2016}>1;\frac{2016}{2015}>1\)
=> \(\frac{2016}{2017}\)và \(\frac{2015}{2016}\)< \(\frac{2017}{2016}\)và \(\frac{2016}{2015}\)
So sánh
a)A=2016^2015 + 1/ 2016^2016 = 1 và B=2016^2016 + 1/ 2016^2017 +1
Vì 20162016 + 1 < 20162017 + 1
\(\Rightarrow B< \frac{2016^{2016}+1+2015}{2016^{2017}+1+2015}=\frac{2016^{2016}+2016}{2016^{2017}+2016}=\frac{2016\left(2016^{2015}+1\right)}{2016\left(2016^{2016}+1\right)}=\frac{2016^{2015}+1}{2016^{2016}+1}=A\)
Vậy A > B
Theo kết luận kết quả là A > B
A =2016^2016+2/2016^2016-1 và B= 2016^2016/2016^2016-3
so sánh
P=2015/2016+2016/2017+2017/2018 và Q=2015+2016+2017/2016+2017+2018
Ta có:\(Q=\frac{2015+2016+2017}{2016+2017+2018}=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì \(\hept{\begin{cases}\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\\\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\\\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\end{cases}}\)
\(\Rightarrow\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(\Rightarrow P>Q\)
Vậy P > Q
so sánh 2016^2017+1/2016^2018+1 với 2016^2015+1/2016^2016+1
so sánh : A= 2015/2016 + 2016/2017 + 2017/2018 và B= 2015+2016+2017 / 2016+2017+2018
A=2015/2016+2016/2017+2017/2018>2015/2018+2016/2018+2017/2018
=6048/2018>1
B=2015+2016+2017/2016+2017+2018=6048/6051<1
=>A>B
so sánh : A= 2015/2016 + 2016/2017 + 2017/2018 và B= 2015+2016+2017 / 2016+2017+2018
Có: B = 2015 + 2016 + 2017/2016 + 2017 + 2018
B= 2015 / (2015 + 2016+2017) + 2016/(2016+2017+2018) + 2017/(2016 + 2017 + 2018)
vì 2015/2016 > 2015/(2016 + 2017+2018) ; 2016/2017>2016/(2016+2017+2018) ; 2017/2018 > 2017/(2016+2017+2018)
=> A>B
có ai là ARMY ko nếu là ARMY thì mọi người cày view chưa
so sánh : A= 2015/2016 + 2016/2017 + 2017/2018 và B= 2015+2016+2017 / 2016+2017+2018