So sánh A và B
\(A=\frac{n^2-1}{n^2+1}\)
\(B=\frac{n^2+3}{n^2+4}\)
so sánh 2 phân số
a) \(\frac{n+1}{n+2}\)và \(\frac{n+3}{n+4}\)
b) \(\frac{n}{n+3}\)và \(\frac{n-1}{n+4}\)
so sánh
A=\(\frac{n^2-1}{n^2+1}\)
B=\(\frac{n^2+3}{n^2+4}\)
\(A=\frac{n^2-1}{n^2+1}=\frac{n^2+1-2}{n^2+1}=1-\frac{2}{n^2+1}\)
\(B=\frac{n^2+3}{n^2+4}=\frac{n^2+4-1}{n^2+4}=1-\frac{1}{n^2+4}\)
Có \(\frac{2}{n^2+1}>\frac{1}{n^2+4}\)
\(\Rightarrow B>A\)
Ta có:
A = \(\frac{n^2-1}{n^2+1}=1+\frac{-2}{n^2+1}\)
B = \(\frac{n^2+3}{n^2+4}=1+\frac{-1}{n^2+4}\)
Ta thấy : 1 = 1
=> So sánh \(\frac{-2}{n^2+1}\)và \(\frac{-1}{n^2+4}\)
\(\frac{-2}{n^2+1}=\frac{-2\left(n^2+4\right)}{\left(n^2+1\right)\left(n^2+4\right)}\)
\(\frac{-1}{n^2+4}=\frac{-1\left(n^2+1\right)}{\left(n^2+4\right)\left(n^2+1\right)}\)
Ta thấy \(-2\left(n^2+4\right)< -1\left(n^2+1\right)\)
=> \(\frac{-2\left(n^2+4\right)}{\left(n^2+1\right)\left(n^2+4\right)}\) < \(\frac{-1\left(n^2+1\right)}{\left(n^2+4\right)\left(n^2+1\right)}\)
Vậy A < B
so sánh
a) \(\frac{n}{n+1}và\frac{n+2}{n+3}\)
b) \(\frac{n}{n+3}và\frac{n-1}{n+4}\)
Bài 1 : So sánh 2 biểu thức A và B,biết rằng :\(A=\frac{N}{N+1}+\frac{N+1}{N+2}\)
\(B=\frac{2n+1}{2n+3}\left(n\in Nsao\right)\)
(Giai = 2 cách)
Cách 1 :
Ta có : \(\frac{n}{n+1}>\frac{n}{2n+3}\left(1\right)\)
\(\frac{n+1}{n+2}>\frac{n+1}{2n+3}\left(2\right)\)
Cộng theo từng vế ( 1) và ( 2 ) ta được :
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{2n+1}{2n+3}=B\)
VẬY \(A>B\)
CÁCH 2
\(A=\frac{n}{n+1}+\frac{n+1}{n+2}>\frac{n}{n+2}+\frac{n+1}{n+2}\)
\(=\frac{2n+1}{n+2}>\frac{2n+1}{2n+3}\)
VẬY A>B
Chúc bạn học tốt ( -_- )
So sánh:
A=\(\frac{n+1}{-n-2}\) và B=\(\frac{-n-2}{n+3}\)
Ta có : \(\left(-n-2\right).\left(-n-2\right)\)
\(=\left(-n-2\right).-n-\left(-n-2\right).2\)
\(=\left(-n\right).\left(-n\right)-2.\left(-n\right)-\left[-n.2-2.2\right]\)
\(=n^2+2n+2n+4\)
\(=n^2+4n+4\)( 1 )
\(\left(n+1\right)\left(n+3\right)\)
\(=\left(n+1\right).n+\left(n+1\right).3\)
\(=n^2+n+3n+3\)( 2 )
Từ ( 1 ) ; ( 2 )
\(\Rightarrow\left(-n-2\right)\left(-n-2\right)>\left(n+1\right)\left(n+3\right)\)
\(\Rightarrow\frac{n+1}{-n-2}>\frac{-n-2}{n+3}\)
Chúc bạn học tốt !!!!
Bài 1: So sánh:
\(\frac{2}{51}+\frac{2}{52}+\frac{2}{53}+.................+\frac{2}{98}+\frac{2}{99}+\frac{2}{100}với1\)
Bài 2: Tìm n thuộc N để mỗi biểu thức sau là STN:
a, \(A=\frac{4}{n-1}+\frac{6}{n-1}-\frac{3}{n-1}\)
b, \(B=\frac{2n+9}{n+2}-\frac{3n}{n+2}+\frac{5n+17}{n+2}\)
Bài 1:
a,So sánh 2 phân sô \(\frac{n}{n+3}\)và \(\frac{n+1}{n+2}\)với (n thuộc N*)
b,So sánh A=\(\frac{10^{11}-1}{10^{12}-1}\)và B=\(\frac{10^{10}1-1}{10^{11}-1}\)
Biết n!=1.2.3...n \(\left(n\inℕ^∗;n\ge2\right)\)và \(A=\frac{1}{2!}+\frac{2}{3!}+\frac{3}{4!}+......+\frac{2014}{2015!}\)
Hãy so sánh A với 1
Ta có \(A=\frac{1}{2!}+\frac{2}{3!}+...+\frac{2014}{2015!}\)
=> \(A=\frac{2-1}{2!}+\frac{3-1}{3!}+...+\frac{2015-1}{2015!}\)
=> \(A=\frac{2}{2!}-\frac{1}{2!}+\frac{3}{3!}-\frac{1}{3!}+...+\frac{2015}{2015!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2!}+\frac{1}{2!}-\frac{1}{3!}+...+\frac{1}{2014!}-\frac{1}{2015!}\)
=> \(A=1-\frac{1}{2015!}< 1\)
Cho N=\(\frac{x+2}{x^2+x+1}\)-\(\frac{2}{x-1}\)-\(\frac{2x^2+4}{1-x^3}\)
a/ Rút gọn N và tìm điều kiện xác định
b/ So sánh N vói \(\frac{1}{3}\)
x khác 1
\(N=\frac{\left(x+2\right)\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}-\frac{2\left(x^2+x+1\right)}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{2x^2+4}{\left(x+1\right)\left(x^2+x+1\right)}\)
\(N=\frac{x^2+2x-x-2-2x^2-2x-2+2x^2+4}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x^2-x}{\left(x-1\right)\left(x^2+x+1\right)}=\frac{x\left(x-1\right)}{\left(x-1\right)\left(x^2+x+1\right)}\)
\(=\frac{x}{x^2+x+1}\)
Xét hiệu 1/3-N=\(\frac{1}{3}-\frac{x}{x^2+x+1}=\frac{x^2+x+1-3x}{3\left(x^2+x+1\right)}=\frac{x^2-2x+1}{3\left(x^2+x+1\right)}=\frac{\left(x-1\right)^2}{3\left(x^2+x+1\right)}>0\)với mọi x khác 1
=> 1/3 >N