Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Sniper
Xem chi tiết
Soái muội
Xem chi tiết
Kiệt Nguyễn
23 tháng 11 2019 lúc 20:05

\(A=x^2+3x-5=x^2+3x+\frac{9}{4}-\frac{29}{4}\)

\(=\left(x+\frac{3}{2}\right)^2-\frac{29}{4}\ge-\frac{29}{4}\)

Vậy \(A_{min}=-\frac{29}{4}\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=-\frac{3}{2}\)

Khách vãng lai đã xóa
Lê Thủy Vân
Xem chi tiết
Tử La Lan
Xem chi tiết
꧁WღX༺
Xem chi tiết
Tran Le Khanh Linh
17 tháng 3 2020 lúc 13:34

a) \(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\left(x\ne\pm1;x\ne0\right)\)

\(\Leftrightarrow A=\left[\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x-1\right)\left(x+1\right)}+\frac{x^2-5x}{\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\left(\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2-x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x+1\right)x}=\frac{x-3}{x+1}\)

Vậy \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

b) \(A=\frac{x-3}{x+1}\left(x\ne\pm1;x\ne0\right)\)

Để A nhận giá trị nguyên thì x-3 chia hết chi x+1

=> (x+1)-4 chia hết chi x+1

=> 4 chia hết cho x+1

x nguyên => x+1 nguyên => x+1 thuộc Ư (4)={-4;-2;-1;1;2;4}
Ta có bảng

x+1-4-2-1124
x-5-3-2013
ĐCĐKtmtmtmktmktmtm

Vậy x={-5;-3;-2;3} thì A đạt giá trị nguyên

c) I3x-1I=5

\(\Rightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{-4}{3}\end{cases}}}\)

Đên đây thay vào rồi tính nhé

Khách vãng lai đã xóa
Minh Nguyen
16 tháng 3 2020 lúc 13:31

a) \(ĐKXĐ:\hept{\begin{cases}x\ne\pm1\\x\ne0\end{cases}}\)

\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}+\frac{x^2-5x}{x^2-1}\right)\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x+1\right)^2-\left(x-1\right)^2+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{x^2+2x+1-x^2+2x-1+x^2-5x}{\left(x-1\right)\left(x+1\right)}\cdot\frac{x-3}{x}\)

\(\Leftrightarrow A=\frac{\left(x^2-x\right)\left(x-3\right)}{x\left(x-1\right)\left(x+1\right)}\)

\(\Leftrightarrow A=\frac{x-3}{x+1}\)

b) Để \(A\inℤ\)

\(\Leftrightarrow x-3⋮x+1\)

\(\Leftrightarrow x+1-4⋮x+1\)

\(\Leftrightarrow4⋮x+1\)

\(\Leftrightarrow x+1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{0;-2;-3;1;3;-5\right\}\)

Mà \(x\ne0;x\ne1\)

\(\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

Vậy để \(A\inℤ\Leftrightarrow x\in\left\{-2;-3;3;-5\right\}\)

c) Khi \(\left|3x-1\right|=5\)

\(\Leftrightarrow\orbr{\begin{cases}3x-1=5\\3x-1=-5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}3x=6\\3x=-4\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-\frac{4}{3}\end{cases}}\)

Vì khi x = 2 hoặc x = -4/3 thì x không thuộc tập hợp các giá trị làm cho A nguyên

Vậy khi |3x - 1| = 5 thì để cho A nguyên \(\Leftrightarrow x\in\varnothing\)

Khách vãng lai đã xóa
Diệu Anh Hoàng
Xem chi tiết
Yến Nhi Ngọc Hoàng
Xem chi tiết
Đoàn Phương Linh
Xem chi tiết
Edogawa Conan
25 tháng 11 2019 lúc 22:09

a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)

A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)

A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)

b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)

Để A \(\in\)Z <=> 2 \(⋮\)x - 1

<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}

<=> x \(\in\){2; 0; 3; -1}

c) Ta có: A < 0

=> \(\frac{x+1}{x-1}< 0\)

=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)

=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\) 

=> -1 < x < 1

Khách vãng lai đã xóa
Lê Tài Bảo Châu
25 tháng 11 2019 lúc 22:13

Edogawa Conan

Thiếu dòng đầu  \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)

Khách vãng lai đã xóa
Bảo Lê Gia
25 tháng 11 2019 lúc 22:33

ĐKXĐ : \(\) x # +1 ; x # - 1 ; x # -2 ; x # 0 ; x # 2

 Ta có: \(A=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}.\left(\frac{1}{1-x}-1\right)\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}.\frac{x}{1-x}\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{1-x}\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\left(\frac{x+1}{x+2}+\frac{x-2}{x-1}\right)\)

  \(=\frac{3x^2+3x-3}{x^2+x-2}-\frac{2x^2-5}{x^2+x-2}\)

  \(=\frac{x^2+3x+2}{x^2+x-2}=\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)

   \(\frac{x+1}{x-1}\)

b. Ta có:  \(A=\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}\)

Để A nhận giá trị nguyên thì: \(2⋮\left(x-1\right)\Rightarrow\left(x-1\right)\inƯ\left(2\right)\)

  +) x - 1 = 1 => x = 2   (loại)

  +) x - 1 = 2 => x = 3  

  +) x - 1 = -1 => x = 0  (loại)

  +) x - 1 = -2 => x = -1    (loại)

Vậy x = 3 là giá trị cần tìm.

c.  \(A< 0\Leftrightarrow\frac{x+1}{x-1}< 0\)

\(\Leftrightarrow\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)   hoặc \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)    hoặc   \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(vô lý)

Vậy \(-1< x< 1\) và x # 0 là giá trị cần tìm

Khách vãng lai đã xóa
Trần Gia Huy
Xem chi tiết