Chứng minh rằng 6 số tự nhiên liên tiếp chia hết cho 6.
giúp mik với các bn, cần Gấp
chứng minh rằng : a, tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b, tích của 3 số tự nhiên liên tiếp chia hết cho 6.
( mong các bn giúp đỡ )
A/tích của 2 số tự nhiên liên tiếp =>\(a\left(a+1\right)\)
Th1: Nếu a là số chẵn ta được
Số chẵn .(Số chẵn+1)
\(\Rightarrow a:2\)
\(\Rightarrow a\left(a+1\right)⋮2\)
Th1: Nếu a là số lẻ ta được
Số lẻ .(Số lẻ+1)
=Số lẻ.Số chẵn\(\Rightarrow a+1⋮2\)
\(\Rightarrow a\left(a+1\right)⋮2\)
B/ CM tương tự
a)Gọi hai số tự nhiên liên tiếp là n;n+1(n ∈ N)
Để n(n+1) chia hết cho hai => n có hai trường hợp
Nếu n chia hết cho 2 => n(n+1) chia hết cho 2(1)
Nếu n không chia hết cho 2 => n = 2k+1 => n+1 = 2k+1+1 = 2k+2 chia hết cho 2(2)
Từ (1); (2)
=> tích của hai số tự nhiên liên tiếp luôn luôn chia hết cho 2
b) Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
a) Ta thấy trong 2 số tự nhiên liên tiếp chắc chắn sẽ có 1 số chia hết cho 2
nên tích của chúng cũng chia hết cho 2
b) Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6Gọi 3 số tự nhiên liên tiếp đó là n-1, n, n+1 (n thuộc N*)
Ta phải chứng minh A = (n-1)n(n+1) chia hết cho 6
n-1 và n là 2 số tự nhiên liên tiếp nên 1 trong 2 số phải chia hết cho 2
=> A chia hết cho 2
n-1, n và n+1 là 3 số tự nhiên liên tiếp nên 1 trong 3 số phải chia hết cho 3 => A chia hết cho 3
Mà (2; 3) = 1 (2 và 3 nguyên tố cùng nhau) => A chia hết cho 2. 3 = 6
hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ liên tiếp. Chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
giải giúp mik nhé! mik cần gấp! thanks
gọi 2 số nguyên tố sinh đôi là n và n+2.vây sô tn nằm giữa 2 số đó la n+1
n là số nguyên tố lớn hơn 3 nên n lẻ.=> n chẵn=>n+1 chia hết cho 2
mặt khác n n+1 n+2 là 3 số tự nguyên liên tiếp .do n và n+2 không chia hết cho 3 nên n+1 phải chia hết cho 3
n+1 chia hết cho cả 2 và 3 nên n+1 chia hêt cho 6.vậy.....
Hãy chứng tỏ rằng:
a, trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5
b, trong 6 số tự nhiên liên tiếp có 1 số chia hết cho 6
cần gấp nha, thanks mn
a/ gọi 5 số tự nhiên liên tiếp là n; n+1; n+2; n+3; n+4
+ Nếu n chia hết cho 5 thì phát biểu trên là đúng
+ Nếu n chia 5 dư 1 thì n có dạng n=5k+1 => n+4=5k+1+4=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2=5k+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+4=5k+4+1=5(k+1) chia hết cho 5
Vậy trong 5 số tự nhiên liên tiếp có 1 số chia hết cho 5
b/ Làm tương tự
Chứng minh rằng tổng của ba số tự nhiên liên tiếp thì chia hết cho 3 còn tổng của 4 số tự nhiên liên tiếp thì không chia hết cho 4.
Giải nhanh giúp mik các pn nka^_^
Gọi tổng của 3 stn liên tiếp là:n+n+1+n+2
Ta có:
n+n+1+n+2=3n+3 chia hết cho 3 (đpcm)
Gọi tổng của 4 stn liên tiếp là:n+n+1+n+2+n+3
=4n+6 ko chia hết cho 4(đpcm)
1: Chứng minh rằng: tích 2 số tự nhiên liên tiếp chia hết cho 2
2: Chứng minh rằng: tích của 3 số tự nhiên liên tiếp chia hết cho 6
1:vì 2 số TNLT có 1 số lẻ & 1 số chẵn => trong 2 số đó sẽ có 1 số chia hết cho 2
1. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2
=> tích 2 số đó chia hết cho 2.
2. Trong 2 số tự nhiên liên tiếp có ít nhất 1 số chia hết cho 2;
trong 3 số tự nhiên liên tiếp có it nhất 1 số chia hết cho 3
Mà (2;3) = 1
=> Tích 3 số đó chia hết cho 2.3 = 6.
1.trong 2 số tự nhiên liên tiếp có 1 số chia hết cho 2=> tích của 2 số tự nhiên liên tiếp luôn chia hết cho 2
2.trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 2 và 1 số chia hết cho 3 mà (2,3)=1=>tích của 3 số tự nhiên liên tiếp luôn chia hết cho 2.3=6
chứng minh rằng 3 số tự nhiên và 3 số nguyên liên tiếp chia hết cho 6
chứng minh rằng 5 số tự nhiên và 5 số nguyên liên tiếp chia hết cho 120
Thiếu đề. tích hay tổng hay hiệu hay thương của 3 số tự nhiên ... ?
Tổng của 5 số tự nhiên liên tiếp bất kì luôn chia hết cho số nào trong các số dưới đây
A. 3
B. 4
C. 5
D. 6
*Sxl
Tổng của 5 số tự nhiên liên tiếp bất kì luôn chia hết cho số nào trong các số dưới đây
A. 3
B. 4
C. 5
D. 6
Hok tốt
Tổng của 5 số tự nhiên liên tiếp bất kì luôn chia hết cho số nào trong các số dưới đây A. 3 B. 4 C. 5 D. 6
Giải thích :
1 + 3 + 5 + 7 + 9 = 25 ( chia hết cho 5 )
11 + 13 + 15 + 17 + 19 = 75 ( chia hết cho 5 )
21 + 23 + 25 + 27 + 29 = 125 ( chia hết cho 5 )
....................
Chứng minh rằng: a) Tích của 2 số tự nhiên liên tiếp chia hết cho 2.
b) Tích của 3 số tự nhiên liên tiếp chia hết cho 6.
c) Tích của 4 số tự nhiên liên tiếp chia hết cho 24.
d) Tích của 5 số tự nhiên liên tiếp chia hết cho 120.
Giải cả 4 phần giúp mình nhé. Xin cảm ơn chân thành các bạn giúp mình giải cả 4 phần!!!
b) Giar sử gọi 3 số tự nhiên liên tiếp là: a, a+1,a+2.
Theo đề bài ta có :
A = a(a + 1) (a + 2) + 6
Ta có 6 = 3x2 mà ( 3,2) = 1
A + 2 vì trong A số tự nhiên liên tiếp có một số chia hết cho 2
A + 3 vì trong A số tự nhiên liên tiếp có một số chia hết cho 3
Vậy tích của 3 STN liên tiếp chia hết cho 6.
Chứng tỏ rằng: a) Trong bốn số tự nhiên liên tiếp, có một số chia hết cho 4. b) Trong hai số tự nhiên chẵn liên tiếp, có một và chỉ một số chia hết cho 4.
giúp mình với mình đang cần gấp
a)Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3
nếu k chia hết cho 4 thì -> điều phài cm
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm
b)
Hai số chẵn liên tiếp có dạng 2a và 2a+2.Ta có
2ax(2a+2)=4ax(a+1)chia hết cho 4.Suy ra 2a hoặc 2a+2 phải chia hết cho 4 mặt khác 2a+2a+2 = 4a+2 ko chia hết cho 4.
.Vậy nếu 2a chia hết cho 4 thì 2a+2 ko chia hết cho 4 ngược lai nếu 2a+2 chia hết cho 4 thì 2a ko chia hết cho 4.
Vậy trong 2 số chẵn liên tiếp chỉ có 1 số chia hết cho 4.