Tìm n thuộc N để cả 3 phân số sau đều là số nguyên
\(\frac{15}{n};\frac{12}{n+2};\frac{6}{2.n-5}\)
Tìm n thuộc N để cả 3 phân số sau đều là số nguyên:\(\frac{15}{n};\frac{12}{n+2};\frac{6}{2n+5}\)
Vì \(n\inℕ\Rightarrow2n+5\ge5\). Lại có \(\frac{6}{2n+5}\)là số nguyên nên suy ra \(2n+5=6\Leftrightarrow n=\frac{1}{2}\)(không thỏa mãn) .
Vậy không tồn tại số tự nhiên \(n\) thỏa mãn yêu cầu bài toán.
\(\frac{15}{n},\frac{12}{n+2},\frac{6}{2n-5}\)
Tìm số tự nhiên n để cả 3 phân số trên đều là số nguyên
Cho phân số : \(\frac{1+2+3+...+20}{6+7+8+...+36}\)
Hãy xóa một số hạng ở mẫu của phân số trên để giá trị của phân số đó không không đổi
Tìm số tự nhiên n để cả 3 phân số sau đều là số nguyên: 15/n; 12/n +1; 6/2n - 5
15/n=>n thuộc ước 15 mà ước 15={1;3;5;15}Vậy lần lượt=1;3;5;15
16/n+1=>n+1 thuộc ước 16 mà ước 16 ={1;2;4;8;16}Vậyn lần lượt =0;1;3;7;15
6/2n-5=>2n-5 thuộc ước 6 mà ước 6={1;2;3;6}Vậy n lần lượt=3;loại;4;loại
Nếu n thuộc N thì như trên
15/n=>n thuộc ước nguyên 15
12/n+1=>n+1 thuộc ước nguyên 12
6/2n-5=>2n-5 thuộc ước nguyên 6
Tìm số Tự Nhiên n để cả 3 Phân Số sau đều là phân số nguyên
15 phần n ; 12 phần n+2 ; 6 phần 2n - 5
Tìm n thuộc Z để cả ba phân số -12 phần n; 15 phần n-2 và 8 phần n +1 đều có giá trị nguyên
Tìm tất cả các từ nhiên n để mọi số sau đều là số nguyên tố:n+1;n+3;n+7;n+9;n+13;n+15
1 Tìm tất cả các số tự nhiên n để mỗi số sau đều là số nguyên tố : n + 1; n+3; n + 7; n + 9; n+13 và n+15
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
tìm tất cả các số tự nhiên n để mỗi số sau đều là số nguyên tố
n+1;n+3;n+7;n+9;n+13;n+15
Tìm tất cả các số tự nhiên n để mỗi số sau đều là số nguyên tố :
n+`1;n+3;n+5;n+7;n+9;n+13;n+15