1) Cho P=1+1/2+1/3+1/4+...+1/2^100-1. Chứng tỏ rằng P>50
2) Tổng của 9 số tự nhiên khác 0 là 2005. Gọi d là UCLN của các số đó. Tìm giá trị lớn nhất của d
Bài 3: (2 điểm)
1) Chứng minh rằng luôn tìm được 2005 số tự nhiên liên tiếp đều
là hợp số cả.
2) Tổng của 9 số tự nhiên khác 0 là 2005. Gọi d là ƯCLN của các
số đó. Tìm giá trị lớn nhất của d.
1) cho 2005 số đó là 2006!+2,2006!+3,2006!+4,...,2006!+2006
Ta thấy 2006!+2 chia hết cho 2
2006!+3 chia hết cho 3
2006!+4 chia hết cho 4
.....................................
2006!+2006 chia hết cho 2006
Vậy cả 2005 số trên đều là hợp số
-> điều phải chứng minh
Cho các số tự nhiên a,b(a,b khác 0) sao cho a+1/b+b+1/a có giá trị là số tự nhiên.Gọi d là ước chung lớn nhất của a và b . Chứng minh rằng a+bl lớn hơn hoặc bằng d mũ 2
trọn hết giây cuối cùng, hưởng thụ trước khi chết
mik sẽ vặn ngược kim đồng hồ trở lại trc công nguyên
bài 1:
a, chứng tỏ rằng số \(\frac{10^{2015}+8}{9}\)là 1 số tự nhiên
b,tìm 2 số tự nhiên có tổng bằng 432 và UCLN của chúng là 36
c,tìm số tự nhiên n để phân số A =\(\frac{8n+193}{4n+3}\)có giá trị là 1 số tự nhiên
a, A= 10^2015+8/9
=1000...08/9 ( 2015 chữ số 0)
Tử có tổng các chữ số bằng 1+8=9 chia hết cho 9
<=>A là 1 số tự nhiên
Tổng của 3 số tự nhiên bất kỳ khác 0 là 1994. Gọi d là ƯCLN của các số tự nhiên đó. Tìm giá trị lớn nhất của d
Gọi 30 số đó là a1; a2; a3;...;a30
Vì ƯCLN(a1; a2;...;a30) là d
=> đặt a1 = d.b1
đặt a2 = d.b2
...
đặt a3 = d.b3
=> d.b1 + d.b2 +...+ d.b30 = 1994
=> d(b1 + b2 +...+ b30) = 1994
=> 1994 chia hết cho d
=> d thuộc {1; 2; 997; 1994) (Vì d thuộc N*) (1)
Mà b1; b2;...;b30 thuộc N* => b1 + b2 +...+ b30 > 30
=> d < 1994/30 => d < 66 (2)
Từ (1) và (2) => d thuộc {1; 2}
Mà d là lớn nhất => d = 2
Vậy d = 2
Câu này có trong câu hỏi tương tự bạn chịu khó tìm bạn nhé :))
1/ Cho đường thẳng (d): y=2x+m+1. Tìm các giá trị của m để đường thẳng (d) cắt trục tung và trục hoành tại A và B sao cho diện tích tam giác OAB bằng 9 (đvdt).
2/ Cho parabol (P): y=x^2
và đường thẳng (d) có hệ số góc là a khác 0 đi qua điểm M(1;2)
a/ Cm rằng (d) luôn luôn cắt P tại hai điểm phân biệt với mọi a khác 0.
b/ Gọi xA và xB là hoành độ giao điểm của P và d. Chứng minh rằng xA+xB-xA.xB=2.
3/ Cho đường thẳng d: (m+1)x + (m-3)y=1
a/ Chứng minh đường thẳng d luôn đi qua một điểm với mọi m và tìm điểm cố định đó.
b/ Gọi h là khoảng cách từ O đến đường thẳng d. Tìm các giá trị của m để h lớn nhất.
cho các số a,b sao cho (a+1)/b+(b+1)/a có giá trị là số tự nhiên. gọi d là ước chung lớn nhất của a và b. Chứng minh rằng a+b bế hơn hoặc bằng d^2
Đặt
X
=
a
+
1
b
+
b
+
1
a
=
a
2
+
b
2
+
a
+
b
a
b
Vì X là số tự nhiên =>
a
2
+
b
2
+
a
+
b
⋮
a
b
Vì d=UCLN(a,b) =>
a
⋮
d
và
b
⋮
d
=>
a
b
⋮
d
2
=>
a
2
+
b
2
+
a
+
b
⋮
d
2
Lại vì
a
⋮
d
và
b
⋮
d
=>
a
2
⋮
d
2
và
b
2
⋮
d
2
=>
a
2
+
b
2
⋮
d
2
=>
a
+
b
⋮
d
2
=>
a
+
b
≥
d
2
(đpcm)
1) Cho A= 4n+1/2n+3. Tìm n thuộc số nguyên để:
a) A là 1 số nguyên của A
b) Tìm giá trị lớn nhất và nhỏ nhất của A
2) Tìm số nguyên dương n nhỏ nhất sao cho ta có cách thêm n chữ số sau số đó để số chia hết cho 39
3) Tìm giá trị lớn nhất của thương 1 số tự nhiên có 3 chữ số và tổng các chữ số của nó
4) Tìm giá trị nhỏ nhất của hiệu giữa 1 số tự nhiên có 2 chữ số và tổng ấc chữ số của nó
1/ chứng tỏ rằng : S= 1+ 1/1! +1/2! + 1/3!+...+ 1/2001! < 3
3/ TÌM CÁC SỐ TỰ NHIÊN A, B, C # 0 , SAO CHO: 1/A + 1/B + 1/C = 4/5
4/ TÌM CÁC CHỮ SỐ A, B, C ĐỂ :
A/ 36/AB = A+ B ( AB LÀ SỐ CÓ 2 CHỮ SỐ)
B/ 1000/A+B+C = ABC ( ABC LÀ SỐ CÓ 3 CHỮ SỐ )
5/ CHO PHÂN SỐ A+B/C+D VỚI A,B,C,D THUỘC Z+. BIẾT RẰNG TỬ VÀ MẪU CỦA PHÂN SỐ CÙNG CHIA HẾT CHO K ( K THUỘC N*. CHỨNG TỎ RẰNG : (AD-BC) CHIA HẾT CHO K
6/TÌM NĂM SỐ NGUYÊN SAO CHO MỖI SỐ TRONG CÁC SỐ ĐÓ ĐỀU BẰNG BÌNH PHƯƠNG CỦA TỔNG 4 SỐ CÒN LẠI.
7/TIM X,Y BIẾT: ( XX + YY ) . XY = 1980 ( XX, YY LÀ SỐ CÓ 2 CHỮ SỐ )
8 / TÌM UCLN CỦA SỐ 11111111 VÀ 11...11( 1994 SỐ 1)
Ta có:
\(S=1+\frac{1}{1!}+\frac{1}{2!}+...+\frac{1}{2001!}\)
\(=2+\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{2001!}\)
Ta lại có:
\(\frac{1}{2!}=\frac{1}{1.2}\)
\(\frac{1}{3!}
Bài 1:
a/ Chứng tỏ rằng số 111222 là tích của 2 số tự nhiên liên tiếp.
b/ Chứng tỏ rằng số 444222 là tích của 2 số tự nhiên liên tiếp.
c/ Chứng tỏ rằng số 11...122...2 là tích của 2 số tự nhiên liên tiếp.
Bài 2:
Cho 9 số xếp vào 9 ô thành 1 hàng ngang,trong đó số đầu tiên là 4,số cuối cùng là 8 và tổng 3 số liền nhau bất kì bằng 17.Hãy tìm 9 số đó.
Bài 3:
Viết liên tiếp các số tự nhiên từ 1 đến 1000 ta được số A=1234...9989991000.
a/ Chữ số 5 xuất hiện mấy lần?
b/ Chữ số 0 xuất hiện mấy lần?
Bài 4: Tính:
333...3 x 999...9 có 20 số 3; 20 số 9.
a la Dạng bài phân tích số, đa thức hay tính giá trị biểu thức thật ra là chứng minh đẳng thức A = B và 1 vế B đã bị giấu đi. Nếu biết cụ thể 2 vế thì chứng minh dễ hơn nhiều.
Bấm máy tính, ta có:
12 = 3.4
1122 = 33.34
111222 = 333.334
11112222 = 3333.3334
....
Có lẽ bạn đã nhận ra quy luật rồi, vậy bắt đầu chứng minh:
Ta có: 111222 = 111000 + 222 = 111.1000 + 111.2 = 111(1000 + 2) = 111(999 + 3) = 111.3(333 + 1)
=333.334 (đpcm)
minh nghi cac ban deu lam dung roi day