tìm số dư trong phép chia đa thức (x+1)(x+3)(x+5)(x+7)+9cho x^2+8x+12
tìm dư trong phép chia đa thức f(x)=(x+1)(x+3)(x+5)(x+7)+2002 cho đa thức g(x)=x2+8x+12
Ta có:
\(g\left(x\right)=x^2+8x+12=\left(x+2\right)\left(x+6\right)\)
Vì g(x) là đa thức bậc 2 nên đa thức dư khi chia f(x) cho g(x) là đa thức bậc nhất.
Đặt đa thức dư khi chia f(x) cho g(x) là h(x)= ax+b.
Ta có
\(h\left(-2\right)=f\left(-2\right)\)
\(\Leftrightarrow-2a+b=1987\)(1)
\(h\left(-6\right)=f\left(-6\right)\)
\(\Leftrightarrow-6a+b=1987\)(2)
Từ (!)(2) suy ra:
\(-2a+b=-6a+b=1987\)
\(\Leftrightarrow-2a=-6a\Leftrightarrow a=0\Rightarrow b=1987\)
Vậy số dư khi chia fx ccho gx là 1987
tìm số dư trong phép chia đa thức
(x+1)(x+3)(x+5)(x+7)+9 cho x2+8x+12
tìm dư của phép chia đa thức f(x)=(x+1)(x+3)(x+5)(x+7)+2003 cho đa thức x^2+8x+12 ?
Bài 1) biết x thuộc z tìm số dư của phép chia
(x+1)(x+3)(x+5)(x+7)+1999 chia cho(x^2+8x+12)
Bài2) đa thức f(x) chia cho x-2 thì dư 5 chia cho x-3 thi dư 7 còn khi chia cho (x-2)(x-3) thì được thương và còn dư.Tìm đa thức f(x)
Mn giúp mình với ,,,ít nữa mình phải đi học rồi
bó tay dù sao mk cũng muốn bạn tick cho mk nha
Tìm số dư trong phép chia của biểu thức :
(x+1)(x+5)(x+3)(x+7)+2002 cho x2+8x+12
(x+1)(x+5)(x+3)(x+7)+2002=[(x+1)(x+7)][(x+5)(x+3)]+2002
=(x2+8x+7)(x2+8x+15)+2002
=(x2+8x+7)(x2+8x+12)+3(x2+8x+7)+2002
=(x2+8x+7)(x2+8x+12)+3(x2+8x+12)+1987
=(x2+8x+10)(x2+8x+12)+1987
Vậy (x+1)(x+5)(x+3)(x+7)+2002 chia x2+x+12 dư 1987.
Bài 1) biết x thuộc z tìm số dư của phép chia
(x+1)(x+3)(x+5)(x+7)+1999 chia cho(x^2+8x+12)
Bài2) đa thức f(x) chia cho x-2 thì dư 5 chia cho x-3 thi dư 7 còn khi chia cho (x-2)(x-3) thì được thương là 1- x^2 và còn dư.Tìm đa thức f(x)
Mn giúp mình với ,,,ít nữa mình phải đi học rồi
Tìm số dư trong phép chia của biểu thức A= (x+1)(x+3)(x+5)(x+7) +2028 cho x2 + 8x +12.
Ta có: \(A=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+2028\)
\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+2028\)
Đặt: \(x^2+8x+12=t\) ta có: \(x^2+8x+7=t-5\) và \(x^2+8x+15=t+3\)
Ta có: \(A=\left(t+3\right)\left(t-5\right)+2028=t^2-2t+2013\)chia t dư 2013
Vậy A chia x2 + 8x + 12 dư 2013
tìm số dư trong phép chia (x+1)(x+3)(x+5)(x+7)+2017cho x^2+8x+12
tìm số dư trong phép chia của biểu thức:
(x+1)(x+3)(x+5)(x+7)+2004 cho x^2+8x+1
có (x+1)(x+3)(x+5)(x+7)+2004
=(x2+8x+7)(x2+8x+15)+2004
=[(x2+8x+1)+6][(x2+8x+1)+14]+2004
=(x2+8x+1)2+20(x2+8x+1)+84+2004
=(x2+8x+1)2+20(x2+8x+1)+2088
vì (x2+8x+1)2 chia hết chox2+8x+1
20(x2+8x+1) chia hết cho x2+8x+1
=>(x+1)(x+3)(x+5)(x+7)+2004 chia cho x2+8x+1 dư 2088