C/m: Nếu 4.abc+deg chia hết cho 32 thì abcdeg chia hết cho 32
chứng minh rằng :
a) Nếu (abc - deg) chia hết cho 1 thì abcdeg chia hết cho 13
b) Nếu abc chia hết cho 7 thì (2a + 3b +c) chia hết cho 7
ai làm được mình tích cho
Chứng minh nếu (abc+deg) chia hết cho 37 thì abcdeg chia hết co 37
abcdeg = 1000.abc + deg = (abc + deg) + 999.abc
Vì abc + deg chia hết cho 37
999.abc chia hết cho 37
=> abcdeg chia hết cho 37
abcdeg=1000.abc+deg=(abc+deg)+999.abc
Vì abc+deg chia hết cho 37
999.abc chia hết cho 37
=> abcdeg chia hết cho 37
tick mk cho tròn 150 nha !!!
Câu 1:tìm số nguyên n sao cho 4n-5 chia hết cho 2n-1
b, tính A=1+10^2+10^4+10^6+....+10^2016
c, chứng minh rằng nếu:(ab+cd+eg)chia hết cho 11 thì abcdeg chia hết cho 11
cho a,b thuộc Z
a, Nếu 2a+b chia hết cho 13 và 5a-4b chia hết cho 13 thì a-6b chia hết cho 13
b, Nếu 100a+b chia hết cho 7 thì a+4b chia hết cho 7
c, Nếu 3a+4b chia hết cho 11 thì a+5b chia hết cho 11
Tìm số tự nhiên nhỏ nhất có chín chữ số, chia hết cho 9 và có các tính chất sau:
Nếu xóa một chữ số tận cùng thì được số chia hết cho 8,
nếu xóa hai chữ số tận cùng thì được số chia hết cho 7,
nếu xóa ba chữ số tận cùng thì được số chia hết cho 6,
nếu xóa bốn chữ số tận cùng thì được số chia hết cho 5,
nếu xóa năm chữ số tận cùng thì được số chia hết cho 4,
nếu xóa sáu chữ số tận cùng thì được số chia hết cho 3,
nếu xóa bảy chữ số tận cùng thì được số chia hết cho 2.
Gọi số phải tìm là abcdeghik
Ta có ab chia hết cho 2, để nhỏ nhất ta chọn ab = 12
Ta có 12c chia hết cho 3, để nhỏ nhất ta chọn c = 0
Ta có 120d chia hết cho 4, để nhỏ nhất ta chọn d = 0
Ta có 1200e chia hết cho 5, để nhỏ nhất ta chọn e = 0
Ta có 12000g chia hết cho 6, để nhỏ nhất ta chọn g = 0
Ta có 120000h chia hết cho 7 nên h = 3
Ta có 1200003i chia hết cho 8 nên i = 2
Ta có 12000032k chia hết cho 9 nên k = 1
Vậy, số đó là 120000321
nếu abc chia hết cho 7 thì 2a+3b+1 chia hết cho 7
1. CMR: nếu a thuộc N không chia hết cho 5 thì a8 + 3a4 - 4 chia hết cho 100
2. Tìm a, b thuộc Z thỏa:
(a + 2) nhân (b - 3) = 7
3. CMR: n5 - n chia hết cho 30 với n thuộc Z
4. Tìm GTNN: A = 32/x2 +2x +4
5. Tìm các góc của tam giác ABC biết:
2Â = 3B = C
Cho abc - deg chia hết cho 11. CMR : abcdeg chia hết cho 11
CMR nếu số tự nhiên abc chia hết cho 37 thì bca và cab cũng chia hết cho 37
Ta có: \(\overline{abc}⋮37\Leftrightarrow100a+10b+c⋮37\)(1)
+) (1) => \(10\left(100a+10b+c\right)⋮37\)
<=> \(100b+10c+a+999a⋮37\) mà \(999a=37.27a⋮37\)
=> \(100b+10c+a⋮37\Leftrightarrow\overline{bca}⋮37\)
+) (1) => \(100\left(100a+10b+c\right)⋮37\)
<=> \(\left(100c+10a+b\right)+999\left(10a+b\right)⋮37\)mà \(999\left(10a+b\right)=37.27\left(10a+b\right)⋮37\)
=> \(\overline{cab}=100c+10a+b⋮37\)