giúp tôi giải bài toán này
24 +(x-2)=5
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Kể về gia đình bạn,mik cho 20 phút làm bài toán cho 30 phút đúng hay sai nè\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)oki nhé.
\(\)\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) đấy làm toán đê,ai đúng mik kết bạn nhé.
ko có ai trả lời à?
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)=
giúp mình với
Take [math]a*x^2 + b*x +c = 0[/math]
Then
=>[math]x^2 + \frac{b}{a} x + \frac{c}{a} = 0[/math]
=>[math]x^2 + \frac{2b}{2a} x + \frac{c}{a} = 0[/math]
=>[math]x^2 + \frac{2b}{2a} x + (\frac{b}{2a})^2 + \frac{c}{a} - ( (\frac{b}{2a})^2 = 0[/math] -(1)
We have it in the form of [math]x^2 + 2px + p^2 + q = 0[/math]
which is [math](x+p)^2 + q = 0[/math]
Thus (1) becomes
[math](x + (\frac{b}{2a} ))^2 + \frac{c}{a} - (\frac{b}{2a})^2 = 0[/math]
[math](x + (\frac{b}{2a}))^2 = (\frac{b}{2a})^2 - \frac{c}{a}[/math]
[math]x + \frac{b}{2a} = \pm \sqrt((\frac{b}{2a})^2 - \frac{c}{a})[/math]
[math]x = -\frac{b}{2a} \pm \sqrt((\frac{b}{2a})^2 - \frac{c}{a})[/math]
[math]x = -\frac{b}{2a} \pm \sqrt(\frac{b^2 - 4ac}{4a^2})[/math]
[math]x = -\frac{b}{2a} \pm \frac{\sqrt(b^2 - 4ac)}{2a}[/math]
[math]x = \frac{-b \pm \sqrt(b^2 - 4ac)}{2a} [/math]
x = 15-x = 15 / 5 = 1\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\) có bn bít thì giúp mik với
có ai hâm mộ EXO không vậy ?
tất nhiên là ..........................ko rồi
e chỉ thích bts thôi
5:7xy:2+1\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tài liệu TeX của Online Math
x = {-b \pm \sqrt{b^2-4ac} \over 2a}
\(x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\)