Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Thj Thu Hiền
Xem chi tiết
Minh Triêt Nguyễn
22 tháng 1 2015 lúc 22:29

Bài này hay thật mình thì chỉ nghĩ ra mỗi cách này. Nhưng ko biết vs học phô thông thì tư duy thế nào

 1 số chính phương có tận cùng bằng 0,1,4,5,6,9
N+1 tận cùng =9=> n tận cùng bằng 8 => 2n+1 tận cùng =7 => loại
(2n+1)-(n+1)=n=a^2-b^2=(a-b)(a+b)
2n+1 là số lẻ => a lẻ
N chẵn=> b chẵn
1 số chính phương chia cho 4 dư 0 hoặc 1 => (a+b)(a-b) chia hết cho 8

Còn nó chia hết cho 3 hay không thì phải dùng định lý của fermat đẻ giải 

http://en.wikipedia.org/wiki/Fermat%27s_little_theorem

như vậy chưng minh no chia het cho 8 và 3 là có thể két luạn nó chia hêt cho 24

cao thành sơn
21 tháng 6 2020 lúc 21:24

ùi hơi khó thế này thì có làm đc ko

Khách vãng lai đã xóa
Đoàn Khánh Linh
Xem chi tiết
Hoàng Phú Huy
18 tháng 3 2018 lúc 16:18

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

Cold Guy
18 tháng 3 2018 lúc 16:20

bạn vào  https://h.vn/hoi-dap/quesion/129628.html

vudinhphuc
Xem chi tiết
Lê Dung
Xem chi tiết
Trần Thj Thu Hiền
17 tháng 1 2015 lúc 22:31

ở trong toán tt2

 

Nguyễn Hải Nam
25 tháng 1 2015 lúc 12:11

các cậu xét số chính phương chia 3 dư 0 hoặc 1 và số chính phương chia 8 dư 0; 1 hoặc 4

Trần Ngọc Linh
Xem chi tiết
Kiên-Messi-8A-Boy2k6
Xem chi tiết
Lâm Gia Huy
14 tháng 3 lúc 20:47

tao là fan CR7

Huy
9 giờ trước (20:58)

Tao phan CR7 chứ ko phải Messi

Agent P
Xem chi tiết
trần ghi bu pha
23 tháng 11 2020 lúc 20:32

mod là j

Khách vãng lai đã xóa
Thượng Huyền Tam - Akaza
28 tháng 9 lúc 17:54

mod là viết tắt của module, là kiến thức liên quan đến đồng dư nha bạn

Truong Trần Phúc Lĩnh
Xem chi tiết
PhamTienDat
Xem chi tiết
Lê Nguyên Hạo
9 tháng 8 2016 lúc 16:17

Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4

Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8

Lại có (n + 1) (2n + 1) = 3n + 2

Ta thấy 3n + 2 = 2 (mod3)

Suy ra (n + 1) (2n + 1) = 2 (mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)

Do đó n chia hết cho 3

hoanganh nguyenthi
21 tháng 8 2018 lúc 20:58

đặt \(\left\{{}\begin{matrix}2n+1=a^2\\3n+1=b^2\end{matrix}\right.\)(\(a,b\in Z\))

\(\Rightarrow a^2+b^2=5n+2\equiv2\left(mod5\right)\)

số chính phương chia 5 chỉ có thể dư 0;1;4 nên \(a^2\equiv1\left(mod5\right);b^2\equiv1\left(mod5\right)\)\(\Rightarrow2n+1\equiv1\left(mod5\right)\Rightarrow n⋮5\)(1)

giờ cần chứng minh \(n⋮8\)

từ cách đặt ta cũng suy ra \(n=b^2-a^2\)

vì số chính phương lẻ chia 8 dư 1 mà 2n+1 lẻ \(\Rightarrow a^2\equiv1\left(mod8\right)\)hay \(2n\equiv0\left(mod8\right)\)\(\Rightarrow n⋮4\) nên n chẵn \(\Rightarrow b^2=3n+1\)cũng là số chính phương lẻ \(\Rightarrow b^2\equiv1\left(mod8\right)\)

do đó \(b^2-a^2\equiv0\left(mod8\right)\)hay \(n⋮8\)(2)

từ (1) và (2) \(\Rightarrow n⋮40\)(vì gcd(5;8)=1)

Lâm Gia Huy
14 tháng 3 lúc 21:01

Vì 2n+1 là số chính phương lẻ nên 2n + 1 = 1 (mod8) => 2n chia hết cho 8 => n chia hết cho 4

Do đó n+1 cũng là số lẻ, suy ra n + 1 = 1 (mod8) => n chia hết cho 8

Lại có (n + 1) (2n + 1) = 3n + 2

Ta thấy 3n + 2 = 2 (mod3)

Suy ra (n + 1) (2n + 1) = 2 (mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên n + 1 = 2n + 1 = 1 (mod3)

Do đó n chia hết cho 3