Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Neo Amazon
Xem chi tiết
Wall HaiAnh
2 tháng 5 2018 lúc 20:27

Ta có:

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\)

Đặt \(I=\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)

Ta có: \(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};\frac{5}{6}< \frac{6}{7};.....;\frac{9999}{10000}< \frac{10000}{10001}\)

\(\Rightarrow C< D\)

Lại có: \(C\cdot D=\left(\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\right)\cdot\left(\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\right)\)

\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{10000}{10001}\)

\(\Leftrightarrow C\cdot D=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot\frac{6}{7}\cdot\cdot\cdot\cdot\cdot\frac{9999}{10000}\cdot\frac{10000}{10001}\)

\(\Leftrightarrow C\cdot D=\frac{1}{10001}\)

Mà C<D \(\Rightarrow C\cdot C< C\cdot D\)

Hay \(C\cdot C< \frac{1}{10001}\)

\(\Rightarrow C< \frac{1}{10001}< \frac{1}{100}\)

Vậy \(C< \frac{1}{100}\left(đpcm\right)\)

Thùyy Linhh
Xem chi tiết
Thái Thanh Tâm
22 tháng 6 2017 lúc 8:46

Đặt :\(C=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{9999}{10000}\)

\(N=\frac{2}{3}.\frac{4}{5}...\frac{10000}{10001}\)

Ta thấy:\(\frac{1}{2}< \frac{2}{3};\frac{3}{4}< \frac{4}{5};....;\frac{9999}{10000}< \frac{10000}{10001}\)

Mặt khác ta thấy:

\(C.N=\left(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{9999}{10000}\right).\left(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{10000}{10001}\right)\)

\(C.N=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}....\frac{9999}{10000}.\frac{10000}{10001}\)

\(C.N=\frac{1.2.3....9999.10000}{2.3.4....10000.10001}\)

Rút gọn  phép tính \(C.N\)

\(C.N=\frac{1}{10001}\)

\(C.C< N\Rightarrow C.C< C.N\)

Hay\(C.C< \frac{1}{10001}< \frac{1}{10000}=\frac{1}{10}.\frac{1}{10}\)

\(\Rightarrow C< \frac{1}{10000}\)(đpcm)

Quang Huy Aquarius
Xem chi tiết
Neo Amazon
Xem chi tiết
Amazons Mega
Xem chi tiết
Long Vũ Hải
Xem chi tiết
Raki uka
Xem chi tiết
ღ子猫 Konღ
Xem chi tiết
Lê Thanh Minh
30 tháng 4 2018 lúc 9:49

A=\(1+\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}\right)\)

Đặt B=\(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+..+\)\(\frac{1}{99.100}=\)\(1-\frac{1}{100}< 1\)

Mà A=1+B=>A=1+B<1+1=2

Trần Cao Vỹ Lượng
30 tháng 4 2018 lúc 10:24

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< 2\)

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A=1-\frac{1}{100}\)

vậy \(A=\frac{99}{100}< 2\left(đpcm\right)\)

B)

ta có : \(1=1\)

\(\frac{1}{2}+\frac{1}{3}< \frac{1}{2}+\frac{1}{2}=1\)

\(\frac{1}{4}+\frac{1}{5}+...+\frac{1}{7}< \frac{1}{4}+...+\frac{1}{4}=\frac{4}{4}=1\)

\(\frac{1}{8}+\frac{1}{9}+...+\frac{1}{15}< \frac{1}{8}+...+\frac{1}{8}=\frac{8}{8}=1\)

\(\frac{1}{16}+\frac{1}{17}+...+\frac{1}{63}< 1\)

tất cả công lại \(\Rightarrow B< 6\)

Nguyễn Mai Hương
Xem chi tiết
TBQT
8 tháng 8 2018 lúc 15:20

Đặt A = \(\frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{9998}{9999}.\frac{10000}{10000}\)

Rõ ràng A < A'

=> A2 < A . A' \(=\frac{1}{10000}=\frac{1}{100^2}\)

Nên A < 0,01