\(\frac{6^5.8^2.21}{49}\)
\(\frac{6^5.8^2.21}{49}\)
Số lẻ lắm bn!!!!!!!\(\frac{1492992}{7}\)
Câu 1 :\(\frac{9.11+19.9}{27.5-27.15}\)
Câu 2 : \(\frac{6^5.8^2.21}{49}\)
\(\frac{9.11+19.9}{27.5-27.15}=\frac{9.\left(11+19\right)}{27.\left(5-15\right)}=\frac{9.30}{3.9.\left(-10\right)}=\frac{30}{3.\left(-10\right)}=\frac{30}{-30}=-1\)
Câu 1: \(\frac{9.\left(11+9\right)}{27.\left(5-15\right)}=\frac{9.20}{27.\left(-10\right)}=-\frac{2}{3}\)
Câu 2: Làm biếng giải quá: =\(\frac{1492992}{7}\)
Giúp mik với
2. Rút gọn
A=\(\frac{49^2.3^{11}}{81^2.21^5}\)
\(A=\frac{49^2\cdot3^{11}}{81^2\cdot21^5}\)
\(=\frac{\left(7^2\right)^2\cdot3^{11}}{\left(3^4\right)^2\cdot\left(3\cdot7\right)^5}\)
\(=\frac{7^4\cdot3^{11}}{3^8\cdot3^5\cdot7^5}\)
\(=\frac{7^4\cdot3^{11}}{3^{13}\cdot7^5}\)
\(=\frac{1}{3^2\cdot7}=\frac{1}{63}\)
Bài làm :
Ta có :
\(A=\frac{49^2\cdot3^{11}}{81^2\cdot21^5}\)
\(A=\frac{\left(7^2\right)^2\cdot3^{11}}{\left(3^4\right)^2\cdot\left(3\cdot7\right)^5}\)
\(A=\frac{7^4\cdot3^{11}}{3^8\cdot3^5\cdot7^5}\)
\(A=\frac{7^4\cdot3^{11}}{3^{13}\cdot7^5}\)
\(A=\frac{1}{3^2\cdot7}\)
\(A=\frac{1}{63}\)
Vậy A=1/63
\(A=\frac{49^2.3^{11}}{81^2.21^5}\)
\(=\frac{\left(7^2\right)^2.3^{11}}{\left(3^4\right)^2.\left(3.7\right)^5}\)
\(=\frac{7^4.3^{11}}{3^8.3^5.7^5}\)
\(=\frac{1}{3^2.7}\)
\(=\frac{1}{63}\)
Học tốt
A=\(\frac{49^5.8^{10}}{14^7.49.4^{13}}-\frac{\frac{7}{10}-\frac{7}{12}+\frac{7}{5}}{0,8-\frac{2}{3}+\frac{8}{5}}\)
Có:495.810/147.49.413=710.230/233.79=7/8 7/10-7/12+7/5 / 8/10-8/12+8/5=7(1/10-1/12+1/5) / 8(1/10-1/12+1/5)=7/8 =>A=7/8-7/8=0 xin lỗi nha mik ghi hơi khó hiểu chút vì mik mới dùng online math.HOK TỐT
A= \(\frac{49^5.8^{10}}{14^7.49.4^{13}}-\frac{\frac{7}{10}-\frac{7}{12}+\frac{7}{5}}{0,8-\frac{2}{3}+\frac{8}{5}}\)
A= \(\frac{7^{10}.2^{30}}{2^7.7^9.2^{26}}-\frac{7\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}{\frac{8}{10}-\frac{2.4}{3.4}+\frac{8}{5}}\)=\(\frac{7^{10}.2^{30}}{7^9.2^{33}}-\frac{7\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}{\frac{8}{10}-\frac{2.4}{3.4}+\frac{8}{5}}\)
A= \(\frac{7^{ }}{2^3}-\frac{7\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}{8.\left(\frac{1}{10}-\frac{1}{12}+\frac{1}{5}\right)}\)
A= \(\frac{7^{ }}{8}-\frac{7}{8}=0\)
Tính tổng \(S=\frac{6}{2.5}+\frac{6}{5.8}+\frac{6}{8.11}+...........+\frac{6}{29.32}\) và chứng tỏ tổng S < 1
\(S=\frac{6}{2.5}+\frac{6}{5.8}+.......+\frac{6}{29.32}\)
\(S=2\left(\frac{3}{2.5}+\frac{3}{5.8}+......+\frac{3}{29.32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+......+\frac{1}{29}-\frac{1}{32}\right)\)
\(S=2\left(\frac{1}{2}-\frac{1}{32}\right)\)
\(S=2.\frac{15}{32}\)
\(S=\frac{15}{16}< 1\RightarrowĐPCM\)
Vậy \(S=\frac{15}{16}\)
\(E=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+...+\frac{99}{101.200}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}=\frac{39}{100}\)
\(E=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}\)
\(=\frac{39}{100}\)
\(\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{3}\left(\frac{1}{5}-\frac{1}{x+3}\right)=\frac{1}{6}\)
\(\Leftrightarrow\frac{1}{5}-\frac{1}{x+3}=\frac{1}{2}\)
\(\Leftrightarrow\frac{1}{x+3}=-\frac{3}{10}\)
\(\Leftrightarrow1\cdot10=-3\left(x+3\right)\)
\(\Leftrightarrow10=-3x-9\)
\(\Leftrightarrow10+9=-3x\)
\(\Leftrightarrow19=-3x\)
\(\Leftrightarrow x=-\frac{19}{3}\)
Đề sai à -.-
\(\frac{1}{5\cdot8}+\frac{1}{8\cdot11}+...+\frac{1}{x\left(x+3\right)}=\frac{1}{6}\)
=> \(\frac{1}{3}\left(\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{x\left(x+3\right)}\right)=\frac{1}{6}\)
=> \(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{x}-\frac{1}{x+3}=\frac{1}{6}:\frac{1}{3}\)
=> \(\frac{1}{5}-\frac{1}{x+3}=\frac{1}{6}\cdot3=\frac{1}{2}\)
=> \(\frac{1}{x+3}=\frac{1}{5}-\frac{1}{2}=-\frac{3}{10}\)
=> \(10=-3\left(x+3\right)\)
=> 10 = -9x - 9
=> 10 + 9x + 9 = 0
=> 19 + 9x = 0
=> 9x = -19
=> x = -19/9
Nhầm khúc cuối
=> 10 = -3x - 9
=> 10 + 3x + 9 = 0
=> 19 + 3x = 0
=> 3x = -19
=> x = -19/3
Tính
\(\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
Rút gọn
c) \(\frac{2^7.3^6}{6^5.8^2}\)
\(\frac{2^7.3^6}{6^5.8^2}=\frac{2^7.3^6}{\left(2.3\right)^5.\left(2^3\right)^2}=\frac{2^7.3^6}{2^5.3^5.2^6}=\frac{2^7.3^6}{2^{11}.3^5}=\frac{3}{2^4}=\frac{3}{16}\)