Cho tam giác ABC cân ở A , duong cao AD , phan giac BE . Tính các góc của tam giác , biết BÉ=2AC
Cho tam giác ABC cân ở A, đường cao AD, phân giác AE, Tính các góc của tam giác, biết BE = 2AD.
1, Cho tam giác ABC cân tại A., đường cao AD, phan giác BE. Tính các góc của tam giác, biết BE = 2AD
2, Cho tam giác ABC, A = \(^{60^0}\) Tia phân giác của góc B và góc C cắt cạnh đối diện ở D và E, BD và CE cắt nhau ở O. Tia phân giác của góc BOC cắt BC ở F. Chứng minh
a, OD=OE=OF
b,Tam giác DÈ là tam giác đều
cho tam giác ABC cân tại A, đường cao AD, phân giác BE. Tính các góc của tam giác biết BE=2AD
cho tam giác ABC cân tại A đường cao AD phân giác BE. Tính các góc của tam giác biết BK= hai AD
cho tam giác ABC cân tại A, đường cao AD, phân giác BE. Tính các góc của tam giác biết BE=2AD
Cho tam giác ABC cân ở A, AD vuông góc BC ( D thuộc BC). Tia phân giác BE. Tính các góc của tam giác ABC biết BE = 2AD
Cho tam giác ABC cân ở A, AD vuông góc BC ( D thuộc BC). Tia phân giác BE. Tính các góc của tam giác ABC biết BE = 2AD
Tam giác ABC cân tại A, đường cao AD, phân giác BE. Tính các góc của tam giác ABC biết BE=2AD
Cho tam giác ABC cân tại A, đường cao AD, phân giác BE. Tính các góc của tam giác ABC
Đặt DH = x. Trên tia đối của tia DA em lấy điểm E sao cho DE = DH = x
=> tam giác BEH cân tại B => ^DBE = ^DBH (1) và BE = BH = 30
Mặt khác : ^ABD = ^ACD = ^BHD (2) ( góc có cạnh tương ứng vuông góc AC _|_ BH; CD _|_ DH)
(1) + (2) : ^ABD + ^DBE = ^BHD + ^DBH = 90o => tam giác ABE vuông tại B
Trong tg ABE vuông tại B đường cao BD nên ta có hệ thức:
DE.AE = BE²
<=> DE(AH + DH + DE) = BE²
<=> x(2x + 14) = 900
<=> 2x² + 14x - 900 = 0
Giải ra x = 18 ( loại nghiệm x = - 25)
=> AD = AH + DH = 14 + 18 = 32