cho 100 số nguyên bất kì.CM ta luôn tìm được 1 số hoặc tổng chia hết cho 100
Chứng minh trong 52 số nguyên dương bất kì luôn tìm được hai số sao cho tổng hoặc hiệu của hai số đó chia hết cho 100
Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)
Đặt \(b_i=-a_i\left(1\le i\le51\right)\)
Xét 102 số : \(a_i\)và \(b_i\)
Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)
=> \(a_i+a_j⋮100\)
Chứng minh rằng trong 52 số nguyên dương bất kì ta luôn tìm được hai số có tổng hoặc hiệu của chúng chia hết cho 100
Ai làm được mk tick nhé
Nếu trong \(52\)số đã cho có hai số có cùng số dư khi chia cho \(100\)ta chỉ cần chọn hai số đó, có hiệu chia hết cho \(100\).
Nếu trong \(52\)số đã cho không có hai số nào có cùng số dư khi chia cho \(100\).
Xét các bộ \(0,\left(1,99\right),\left(2,98\right),...,\left(a,100-a\right),...,\left(49,51\right)\)(các số dư của các số khi chia cho \(100\))
Có \(51\)bộ mà có \(52\)số nên theo nguyên lí Dirichlet có ít nhất hai số thuộc một bộ.
Xét hai số thuộc bộ đó, dễ thấy tổng của chúng chia hết cho \(100\).
Ta có đpcm.
anh Đoàn Đức Hà ơi chỉ có 50 bộ thôi mà anh sao lại 51 bộ ạ
Chứng minh rằng trong 52 số nguyên dương bất kì ta luôn tìm được hai số sao cho tổng của chúng chia hết cho 100
Ta xét 51 nhóm sau:
Nhóm 1: Các số tự nhiên chia hết cho 100
Nhóm 2: Các số tự nhiên chia 100 dư 1 và 99
Nhóm 3: Các số tự nhiên chia 100 dư 2 và 98
...
Nhóm 51: Các số tự chia 100 dư 50
Nếu có 2 số cùng chia hết cho 100 thì bài toán đã chứng minh
Nếu không có 2 số chia hết 100 thì ta làm như sau:
Vì có 52 số mà có 51 nhóm nên theo nguyên lí Đi rich lê phải có 1 nhóm có tổng hoặc hiệu chia hết cho 100
=> Đpcm
đây nha bạn chúc bạn học tốt
Nếu có hai số có cùng số dư khi chia cho 100 thì bài toán được giải quyết
Giả sử có ít nhất 51 số không chia hết cho 100.Xét 50 cặp :(1,99),(2,98),......(49,51),(50,50) mà mỗi cặp có tổng là 100
Theo Đi-rich-lê ta có trong 51 số đã giả sử ở trên luôn tồn tại 2 số mà số dư của chúng khi chia cho 100 cùng rơi vào 1 cặp trong 50 cặp ở trên
=> tổng của chúng chia hết cho 100
=> dpcm
HT nha bn
Chứng minh rằng trong 100 số nguyên bất kì luôn tìm được 1 số ` \vdots` cho 100 hoặc 1 số số có tổng `\vdots` cho 100
Gọi `100` số nguyên đã cho là : `a_1`;`a_2`;...;`a_(100)`
Xét `100` tổng sau : `S_1` = `a_1`
`S_2` = `a_1 + a_2`
` .... `
`S_(100)` = ` a_1 + a_2 + ... + a_(100) `
` => ` Ta xét 2 TH sau
` + TH1` Trong 100 tổng trên `\exists` 1 tổng `\vdots` 100 `=> ` `Đpcm`
` +TH2 ` Trong 100 tổng trên `\cancel{exists}` 1 tổng nào `vdots` 100
Khi đó chia `100` tổng này cho `100` ta được các số dư `in` { 1;2;3;...;99}
Vì có `100` số dư mà chỉ có `99` khả năng dư nên theo nguyên lí Đi-rích-lê sẽ tồn tại ít nhau 2 số dư bằng nhau khi chia cho `100`
Giả sư `a_m` và `a_n` là 2 số đó ( giả sử : `a_m > a_n` )
Suy ra ` a_m - a_n \vdots 100 ` hay ` (a_1 + a_2 + ... + a_m) - (a_1 + a_2 + ... + a_n) \vdots 100 ` `=> ` ` a_(n+1) + a_(n+2) + ... + a_m \vdots 100 ` ` => đpcm `
` Chúc bạn hk tốt `
Chứng minh rằng từ 52 số nguyên bất kỳ luôn có thể chọn ra được 2 số mà tổng hoặc hiệu của chúng chia hết cho 100.
cho 100 số tự nhiên bất kì . chứng minh rằng trong 100 số này luôn có 1 số hoặc một số số có tổng chia hết cho 100
Gọi `100` số nguyên đã cho là : `a_1`;`a_2`;...;`a_(100)`
Xét `100` tổng sau : `S_1` = `a_1`
`S_2` = `a_1 + a_2`
` .... `
`S_(100)` = ` a_1 + a_2 + ... + a_(100) `
` => ` Ta xét 2 TH sau
` + TH1` Trong 100 tổng trên `\exists` 1 tổng `\vdots` 100 `=> ` `Đpcm`
` +TH2 ` Trong 100 tổng trên `\cancel{exists}` 1 tổng nào `vdots` 100
Khi đó chia `100` tổng này cho `100` ta được các số dư `in` { 1;2;3;...;99}
Vì có `100` số dư mà chỉ có `99` khả năng dư nên theo nguyên lí Đi-rích-lê sẽ tồn tại ít nhau 2 số dư bằng nhau khi chia cho `100`
Giả sư `a_m` và `a_n` là 2 số đó ( giả sử : `a_m > a_n` )
Suy ra ` a_m - a_n \vdots 100 ` hay ` (a_1 + a_2 + ... + a_m) - (a_1 + a_2 + ... + a_n) \vdots 100 ` `=> ` ` a_(n+1) + a_(n+2) + ... + a_m \vdots 100 ` ` => đpcm `
trong 52 số tự nhiên bất kì bao giờ ta cũng có thể tìm được hai số có tổng hoặc hiệu chia hết cho 100?
cho 52 số tự nhiên bất kì, chứng minh rằng tổng hoặc hiệu cua 2 số tự nhiên bất kì luôn chia hết cho 100
cho 52 số tự nhiên bất kì ,CMR luôn tồn tại trong đó 2 số có tổng hoặc hiệu chia hết cho 100