Tìm giá trị nhỏ nhất của biểu thức: |x-5|+120
Tìm giá trị lớn nhất của biểu thức: 2018-(x-1)^2
Ta có :
\(\left(x-1\right)^2\ge0\)
\(\Rightarrow\)\(2018-\left(x-1\right)^2\le2018\)
Dấu "=" xảy ra khi và chỉ khi \(\left(x-1\right)^2=1\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=1\\x-1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=0\end{cases}}}\)
Vậy GTLN của biểu thức \(2018-\left(x-1\right)^2\) là \(2018\) khi \(x=0\) hoặc \(x=2\)
Chúc bạn học tốt ~
Ta có :
\(\left|x-5\right|\ge5\)
\(\Rightarrow\)\(\left|x-5\right|+120\ge120\)
Dấu "=" xảy ra khi và chỉ khi \(\left|x-5\right|=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
Vậy GTNN của biểu thức \(\left|x-5\right|+120\) là \(120\) khi \(x=5\)
Chúc bạn học tốt ~
với giá trị nào của x,y yhif biểu thức A=|x-y|+|x+1|+2018 đạt giá trị nhỏ nhất tìm giá trị nhỏ nhất đó
ta có
\(\left|x-y\right|+\left|x+1\right|\ge0\)với mọi x,y
\(\Rightarrow\left|x-y\right|+\left|x+1\right|+2018\ge2018\)với mọi x,y
dấu = sảy ra <=>\(\left|x-y\right|+\left|x+1\right|=0\)mà \(\left|x-y\right|\ge0 VS \left|x+1\right|\ge0\)=>\(\left|x-y\right|=0 VS \left|x+1\right|=0\Leftrightarrow x-y=0 VS x+1=0\Leftrightarrow x=-1 VS y=-1\)
a) Tìm x biết: |x+10| + |x+20| + |x+30| =5x
b) Tìm giá trị nhỏ nhất của biểu thức A= -2018+ |x+7|
c) Tìm giá trị lớn nhất của biểu thức B= -2018- |x-17|
a)tìm giá trị nhỏ nhất của biểu thức E = |x-30|+|y-4|+(z-2018)^2
b)tìm giá trị lớn nhất của biểu thức F = 19-|x-5|-(y-2018)^2
Tìm giá trị nhỏ nhất của biểu thức
A=|x-2018| + |x-1|
Tìm giá trị nhỏ nhất của biểu thức A= |x-2017| + x-2018
Ta có: \(A=|x-2017|+x-2018\)
\(\Rightarrow A=|2017-x|+x-2018\)
\(\Rightarrow A\ge2017-x+x-2018=-1\)
Dấu " = " xảy ra \(\Leftrightarrow x\le2017\)
Vì \(|x-2017|\)\(\ge\) \(0\)\(\forall x\)
=> A\(\ge x-2018\forall x\)
Dấu " = " xảy ra khi \(|x-2017|\)=0
=> x= 2017
thiếu rồi bổ sung thêm: vậy A nhỏ nhất khi x=2017
Khi đó A=-1
tìm giá trị lớn nhất hoặc giá trị nhỏ nhất của biểu thức
2018 + 5 . |x + 1|
Ta có | x + 1 | \(\ge\)0 \(\forall\)x
=> 5 . | x + 1 | \(\ge\)0 \(\forall\)x
=> 2018 + 5 . | x + 1 | \(\ge\)2018 \(\forall\)x
Dấu " = " xảy ra <=> x + 1 = 0 => x = -1
Vậy, GTNN của A = 2018 khi và chỉ khi x = -1
ta có :|x+1| >=0
=> 5|x+1|>=0
=> 2018+5|x+1|>= 2018
dấu = xảy ra khi |x+1|=0
x+1=0
x=-1
vay gtnn cua bieu thuc tren la 2018 khi x=-1
tìm giá trị nhỏ nhất của biểu thức A=|x-2016|+2017/|x-2016|+2018
tìm giá trị nhỏ nhất của biểu thức a= /x-2016/+2017 phần /x-2016/+2018
\(A=\frac{\left|x-2016\right|+2017}{\left|x-2016\right|+2018}=\frac{\left|x-2016\right|+2018-1}{\left|x-2016\right|+2018}=1-\frac{1}{\left|x-2016\right|+2018}\)
để A nhỏ nhất => \(\frac{1}{\left|x-2016\right|+2018}\)lớn nhất => |x-2016|+2018 nhỏ nhất
\(\left|x-2016\right|\ge0\Rightarrow\left|x-2016\right|+2018\ge2018\)
dấu = xảy ra khi |x-2016|=0
=> x=2016
Vậy Min A=\(\frac{2017}{2018}\)khi x=2016
ps: sai sót bỏ qua