tìm số nguyên tố n nhỏ nhất để 2.n+1 là lập phương của một số tự nhiên
tìm số nguyên tố nhỏ nhất n để 2 n +1 là lập phương của một số tự nhiên n ....
Tìm số nguyên tố n nhỏ nhất để 2n+1 là lập phương của một số tự nhiên
tìm số nguyên tố n nhỏ nhất để 2n + 1 là lập phương của một số tự nhiên
Số nguyên tố n nhỏ nhất để 2n + 1 là lập phương của một sô tự nhiên là n = 4
bạn cứ chọn câu trả lời của mk đi mk chắc chắn 100% luôn
Tìm số nguyên tố n nhỏ nhất để 2n+1 là lập phương của một số tự nhiên.
Tìm số nguyên tố n nhỏ nhất để 2n + 1 là lập phương của một số tự nhiên
*Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
*Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
+,Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
+,Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
k mình nha
Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có 2 ước là 1 và chính nó. Mọi số tự nhiên >1 bao giờ cũng có ước nguyên tố .
- Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước
- Tập hợp số nguyên tố là vô hạn
- Số 0 và 1 không phải là số nguyên tố; cũng không là hợp số
- Số nguyên tố chẵn duy nhất là 2
- Số a và b gọi là 2 số nguyên tố cùng nhau
- p là số nguyên tố; p > 2 có dạng : p = 4n + 1 hoặc p= 4n+3
- p là số nguyên tố; p > 3 có dạng : p = 6n +1 hoặc p =6n + 5
- Ước nguyên tố nhỏ nhất của hợp số N là 1 số không vượt quá √N
- số nguyên tố Mecxen có dạng 2^p - 1 (p là số nguyên tố )
- Số nguyên tố Fecma có dạng 2^(2n) + 1 (n Є N)
Khi n = 5. Euler chỉ ra 2^(2.5) + 1 = 641.6700417 (hợp số )
Không biết 1 trong 2 bạn ai đúng đây
Mình nghĩ cách của bạn o0o đồ khùng o0o là đúng đấy
Cách làm hợp lí hơn bạn Askaban Trần
Bạn Askaban Trần chép trong câu hỏi tương tự rồi
Tìm số nguyên tố n nhỏ nhất để 2n+1 là lập phương của một số tự nhiên.
Đặt 2p + 1 = n³ với n là số tự nhiên
Cách giải: phân tích ra thừa số
Dùng tính chất : Số nguyên tố có 2 ước là 1 và chính nó.
Giải:
♣ Ta thấy p = 2 thì 2p + 1 = 5 không thỏa = n³
♣ Nếu p > 2 => p lẻ (Do Số nguyên tố chẵn duy nhất là 2 )
Mặt khác : 2p + 1 là 1 số lẻ => n³ là một số lẻ => n là một số lẻ
=> 2p + 1 = (2k + 1)³ ( với n = 2k + 1 )
<=> 2p + 1 = 8k³ + 12k² + 6k + 1
<=> p = k(4k² + 6k + 3)
=> p chia hết cho k
=> k là ước số của số nguyên tố p.
Do p là số nguyên tố nên k = 1 hoặc k = p
♫ Khi k = 1
=> p = (4.1² + 6.1 + 3) = 13 (nhận)
♫ Khi k = p
=> (4k² + 6k + 3) = (4p² + 6p + 3) = 1
Do p > 2 => (4p² + 6p + 3) > 2 > 1
=> không có giá trị p nào thỏa.
Đáp số : p = 13
Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có 2 ước là 1 và chính nó. Mọi số tự nhiên >1 bao giờ cũng có ước nguyên tố .
- Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước
- Tập hợp số nguyên tố là vô hạn
- Số 0 và 1 không phải là số nguyên tố; cũng không là hợp số
- Số nguyên tố chẵn duy nhất là 2
- Số a và b gọi là 2 số nguyên tố cùng nhau
- p là số nguyên tố; p > 2 có dạng : p = 4n + 1 hoặc p= 4n+3
- p là số nguyên tố; p > 3 có dạng : p = 6n +1 hoặc p =6n + 5
- Ước nguyên tố nhỏ nhất của hợp số N là 1 số không vượt quá √N
- số nguyên tố Mecxen có dạng 2^p - 1 (p là số nguyên tố )
- Số nguyên tố Fecma có dạng 2^(2n) + 1 (n Є N)
Khi n = 5. Euler chỉ ra 2^(2.5) + 1 = 641.6700417 (hợp số )
Số nguyên tố là số tự nhiên lớn hơn 1 và chỉ có 2 ước là 1 và chính nó. Mọi số tự nhiên >1 bao giờ cũng có ước nguyên tố .
- Hợp số là số tự nhiên lớn hơn 1 và có nhiều hơn 2 ước
- Tập hợp số nguyên tố là vô hạn
- Số 0 và 1 không phải là số nguyên tố; cũng không là hợp số
- Số nguyên tố chẵn duy nhất là 2
- Số a và b gọi là 2 số nguyên tố cùng nhau
- p là số nguyên tố; n > 2 có dạng : p = 4n + 1 hoặc p= 4n+3
- p là số nguyên tố; p > 3 có dạng : p = 6n +1 hoặc p =6n + 5
- Ước nguyên tố nhỏ nhất của hợp số N là 1 số không vượt quá √N
- số nguyên tố Mecxen có dạng 2^p - 1 (p là số nguyên tố )
- Số nguyên tố Fecma có dạng 2^(2n) + 1 (n Є N)
Khi n = 5. Euler chỉ ra 2^(2.5) + 1 = 641.6700417 (hợp số )
Tìm số nguyên tố n nhỏ nhất để 2n+1 là lập phương của 1 số tự nhiên
Tìm số nguyên tố n nhỏ nhất để 2n+1 là lập phương của 1 số tự nhiên
N=?
1. Tìm số nguyên dương n để P nguyên tố
P= n( n +1 )/2
2. Tìm số nguyên tố P để 2P+1 là lập phương của một số tự nhiên
3. Tìm n thuộc số tự nhiên khác 0 đển n^4 + 4 là số nguyên tố
Em tham khảo!
Câu 3: Câu hỏi của trần như - Toán lớp 8 - Học toán với OnlineMath
Câu 2: Câu hỏi của Hoàng Bình Minh - Toán lớp 8 - Học toán với OnlineMath