Tính giá trị của A,biết A = 2013 x 2015 + 100 / 2014 x 2014 + 99
Không tính giá trị biểu thức, so sánh A và B, biết:
A = 2013 x 2015 + 100
B = 2014 x 2014 + 99
tìm giá trị nhỏ nhất của biểu thức:
D=/x-2013/+/x-2014/+/x-2015/+/x-2016/
(/x-2013/ là giá trị tuyệt đối của x-2013 nhé ; /x-2014/,/x-2015/,/x-2016/ cũng vậy)
Câu 1:
a)Cho A=\(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+\frac{5}{5^2}+...+\frac{99}{2^{99}}+\frac{100}{2^{100}}\). So sánh A với B
b) Cho B= x2013 - 2014.x2012 + 2014.x2011 - 2014.x2010 +...- 2014.x2 + 2014.x - 1. Tính giá trị biểu thức với x=2013
Bạn xem lại đề câu a) cho rõ lại
Câu b) Tại x=2013 thì B=x2013-(x+1)x2012+(x+1)x2011-(x+1)x2010+...-(x+1)x2+(x+1)x-1
= x2013-x2013-x2012+x2012+x2011-x2011-x2010+..-x3 - x2+x2+x-1
= x-1 = 2012
Với giá trị nào của x thì A=|x-2013|+|x-2014|+|x-2015|+|x-2016| đạt giá trị nhỏ nhất?
A . Tính giá trị của biểu thức :
100 - 9^2015 : ( 2 . 9^2014 + 9^2014 )
B . Tìm số tự nhiên x , biết :
x + 2x + 3x + 4x = 10^4
Tìm giá trị nhỏ nhất của biểu thức sau: A = |x - 2013| + |x - 2014| + |x- 2015|
\(A=\left|x-2013\right|+\left|x-2014\right|+\left|x-2015\right|=\left|x-2014\right|+\left(\left|x-2013\right|+\left|2015-x\right|\right)\)
\(\Leftrightarrow A\ge\left|x-2014\right|+\left|x-2013+2015-x\right|=\left|x-2014\right|+2\ge2\)
Dấu "=" xảy ra <=> \(\left(x-2013\right)\left(2015-x\right)\ge0\) và \(\left|x-2014\right|=0\)
\(\Leftrightarrow2013\le x\le2015\) và \(x=2014\) (thỏa mãn)
Vậy \(A_{min}=2\) tại \(x=2014\)
Tìm giá trị nhỏ nhất của biểu thức :
A = / x - 2013 / + / x - 2014 / + / x - 2015 /
Để A=|x-2013| + |x-2014| + |x-2015| có giá trị nhỏ nhất thì |x-2013| + |x-2014| + |x-2015 nhỏ nhất
=>|x-2013| + |x-2014| + |x-2015=0
Vậy A=0 là nhỏ nhất
Mk lm chưa đầy đủ còn nhiều thiếu sót bn thông cảm nha mk bận rồi
Tính giá trị biểu thức :
2012 x 2013 + 2011 / 2014 x 2013 - 2015
2012×2013+2011/2014×2013-2015=2012×2013+2011/(2012+2)×2013-2015=2012×2013+2011/2012×2013+2×2015=2012×2013+2011/2012×2013+4026-2015=2012×2013+2011/2012×2013+2011=1
Tìm giá trị nhỏ nhất của biểu thức sau:
A=
x-2013|+|x-2014|+|x-2015|
Ta có: A = |x-2013|+|x-2014|+|x-2015|
Vì \(\left|x-2013\right|\ge0;\left|x-2014\right|\ge0;\left|x-2015\right|\ge0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\x-2014=0\\x-2015=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=2014\\x=2015\end{cases}}}\)
Vậy x không có giá trị vì x không thể cùng lúc có tới 3 giá trị khác nhau
\(\Rightarrow x\in\theta\)