cmr với mọi số nguyên tố p lớn hơn 2 đều không tồn tại số dương m,n thỏa mãn 1/p=1/m^2 +1/n^2
C/M rằng với mọi số nguyên tố lẻ p đều ko tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
Vì p là số nguyên tố lẻ nên p>1.ĐKXĐ m,n khác 0.
Ta có: \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\Leftrightarrow\)\(\frac{1}{p}=\left(\frac{m^2+n^2}{m^2n^2}\right)\Leftrightarrow\)\(\left(m^2+n^2\right)p=m^2n^2\) \(\left(1\right)\)
\(\Leftrightarrow m^2n^2-m^2p-n^2p+p^2=p^2\Leftrightarrow\left(m^2-p\right)\left(n^2-p\right)=p^2\) \(\left(2\right)\)
Từ (1) ta được m hoặc n chia hết p.Giả sử m chia hết cho p. Đặt m2=a2p2 ( a khác 0) nên (2) \(\Leftrightarrow\) \(\left(a^2p^2-p\right)\left(n^2-p\right)=p^2\)
\(\Leftrightarrow\left(a^2p-1\right)\left(n^2-p\right)=p\)
Vì a khác 0 nên a2>0 a2p chia hết p . Vì p>2 nên a2p-1 không chia hết cho p.
Vậy n2-p chia hết cho p nên n chia hết cho p . Đặt n=bp.
Dựa pt đầu ta có \(\frac{1}{p}=\frac{1}{a^2p^2}+\frac{1}{b^2p^2}\Leftrightarrow1=\frac{1}{a^2p}+\frac{1}{b^2p}\)
nên a2p=2 và b2p=2 nên vô lý
Chứng minh rằng với mọi số nguyên tố p>2 đề không tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
cmr không tồn tại các số nguyên dương m,n,p với p nguyên tố thỏa mãn m2019+n2019=p2018
tồn tại hay không số nguyên dương m,n,p thỏa mãn đồng thời các điều kiện (m+n,mn-1)=1, (m-n; mn+1)=1 và \(\text{(m+n)^2+(mn-1)^2=p^2}\)?. (Trong đó (a,b) là ước chung lớn nhất của 2 số nguyên dương a và b)
Bài 8. Cho số nguyên dương n. Tồn tại hay không số nguyên dương d thỏa mãn: d là ước của 3n^2 và n^2 +d là số chính phương. Bài 9. Chứng minh rằng không tồn tại hai số nguyên dương x, y thỏa mãn x^2 +y+1 và y^2 +4x+3 đều là số chính phương.
Ai đó giúp mình đi mòaa🤤🤤🤤
Tồn tại không số nguyên tố p và số nguyên dương n thỏa mãn 2n .p2+1 là lập phương của một số nguyên dương
CMR ko tồn tại số nguyên tố p sao cho 2^p+3^p có dạng k^n, với k,n là các số nguyên dương lớn hơn 1
Cho A là một số nguyên dương gồm 4039 chữ số, trong đó có 2019 chữ số 1 và 2020 chữ số 0. CMR không tồn tại hai số nguyên dương a,n lớn hơn 1 thỏa mãn A=\(a^n\)