Cho đoạn thẳng AB và điểm C nằm giữa A và B.Trên cùng 1 nửa mặt phẳng bờ AB vẽ hai tam giác đều ACD và BCE.Gọi M và N lần lượt là trung điểm của AE và BD.CMR:
a,AE=BD b,tam giác CME=CNB c,Tam giác MNC đều
Help me!!!!!!!!!!!
Cho đoạn thẳng AB và điểm C nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ hai tam giác đều ACD và BCE.Gọi M và N lần lượt là trung điểm của AE và BD. Chứng minh rằng:
a/ AE = BD
b/ tam giác CME=tam giác CNB
c/ tam giác MNC là tam giác đều
sau khi đọc lời giải, nếu thấy đúng thì chúng ta kết bạn, okey?
1) TA XÉT T/G AEC VÀ T/G DBC CÓ: DC=CA (VÌ T/G ADC ĐỀU)
GÓC ACE= GÓC DCB (CÙNG KỀ BÙ VS 1 GÓC = 60 ĐỘ)
CE=CB (VÌ T/G CEB ĐỀU)
=> T/G AEC= T/G DBC (C-G-C)
=> BD=AE (2 CẠNH TƯƠNG ỨNG)
=> ĐPCM
2) TA THẤY T/G AEC= T/G DBC
=> GÓC AEC= GÓC DBC (2 GÓC TƯƠNG ỨNG)
HAY GÓC MEC= GÓC NBC (VÌ N THUỘC DB, M THUỘC AE)
LẠI CÓ: AE= BD (K/Q CÂU 1)
=> 1/2 AE= 1/2 BD
=> ME= NB
XÉT T/G CME VÀ T/G CNB CÓ: ME=NB (CMT)
GÓC MEC= GÓC NBC (CMT)
CE=CB (VÌ T/G CEB ĐỀU)
=> T/G CME= T/G CNB (C-G-C)
=> ĐPCM
3) TA CÓ T/G CME= T/G CNB (K/Q CÂU 2)
=> CN= CM (2 CẠNH TƯƠNG ỨNG) => T/G MNC CÂN Ở C (1)
=> GÓC MCE= GÓC NCB (2 GÓC TƯƠNG ỨNG)
MÀ GÓC MCE= GÓC MCN + GÓC NCE
GÓC NCB= GÓC NCE + GÓC ECB
=> GÓC MCN + GÓC NCE= GÓC NCE + GÓC ECB
=> GÓC MCN= GÓC ECB
=> GÓC MCN= 60 ĐỘ (VÌ GÓC ECB= 60 ĐỘ) (2)
TỪ (1) VÀ (2) => T/G MNC LÀ T/G ĐỀU
=> ĐPCM
cho đoạn thẳng ab và điểm c nằm giữa a và b. trên cùng một nửa mặt phẳng bờ ab vẽ hai tam giác đều acd và bce . gọi m và n lần lượt là trung điểm của ae và bd . chứng minh rằng
a) ae= bd
b) tam giác cme=tam giác cnb
c) tam giác mnc là tam giác đều
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
b1:CHO tam giác ABC cân tại A có AE=AD,AE giao AD tại M
a.BE=CD
b.tam giác BMD=tam giác CME
c.AM là p/g góc BAC
B2; cho đoạn thg AB và C nằm giữa A và B.tRÊN CÙNG 1 NỬA MẶT PHẲNG bờ AB vẽ 2 tam giác ACD và tam giác BCE.Gọi M và N lần lượt là trung điểm AE và BD
a.AE=BD
b.tam giác CME =tam giác CNB
c.tam giác MNC đều
cho đoạn thẳng AB và điểm C nằm giữa A và B. trên cùng một nửa mặt phẳng bờ ab vẽ hai tam giác đều ACD và BCE . gọi m và n lần lượt là trung điểm của AE và BD . chứng minh rằng
a) AE = BD
b) tam giác CME = tam giác CNB
c) tam giác mnc là tam giác đều
a) Ta có \(\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\)
Xét tam giác DCB và tam giác ACE có:
DC = AC (gt)
CB = CE (gt)
\(\widehat{ACE}=\widehat{DCB}\) (cmt)
\(\Rightarrow\Delta DCB=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow DB=AE\) (Hai cạnh tương ứng)
b) Do \(\Delta DCB=\Delta ACE\Rightarrow\widehat{NBC}=\widehat{MEC}\)
Do DB = AE nên ME = NB
Xét tam giác CME và tam giác CNB có:
ME = NB (cmt)
CE = CB (gt)
\(\widehat{MEC}=\widehat{NBC}\) (cmt)
\(\Rightarrow\Delta CME=\Delta CNB\left(c-g-c\right)\)
c) Vì \(\Delta CME=\Delta CNB\Rightarrow CM=CN;\widehat{MCE}=\widehat{NCB}\)
Suy ra \(\widehat{MCE}+\widehat{ECN}=\widehat{NCB}+\widehat{ECN}=\widehat{ECB}=60^o\)
\(\Rightarrow\widehat{MCN}=60^o\)
Xét tam giác CMN có CM = CN nên nó là tam giác cân.
Lại có \(\widehat{MCN}=60^o\) nên CMN là tam giác đều.
cho đoạn thẳng AB và điểm C nằm giữa A và B . Trên nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE Gọi M và N lần lượt là trung điểm của AE và BD chứng minh
AE =BD
tam giác CME = tam giác CNB
tam giác MNC là tam giác đều
Cho đoạn thẳng AB và điểm C nằm giữa A và B . trên cùng 1 nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE. gọi M và N lần lượt là trung điểm của AE và BD. chứng minh :
a. AE = BD
b. tam giác CME= TAM GIÁC CNB.
c. TAM GIÁC MNC LÀ TAM GIÁC ĐỀU
# GIÚP VỚI Ạ !!!
Cho đoạn thẳng AB và điểm C nằm giữa A và B . Trên cùng một nửa mặt phẳng bờ AB vẽ hai tam giác đều ACD và BCE . gọi M và N lần lượt là trung điểm của AE và BD
CMR : a) AE = BD
b) Tam giác CME = tam giác CNB
c) Tam giác MNC là tam giác đều
a) Ta có: \(\widehat{ACD}=60^0\)( tính chất tam giác đều )
\(\widehat{ACE}=\widehat{ACD}+\widehat{DCE}\)
=> \(\widehat{ACE}=60^0+\widehat{DCE}\)
\(\widehat{BCE}=60^0\)( tính chất tam giác đều )
\(\widehat{DCB}=\widehat{DCE}+\widehat{BCE}=60^0+\widehat{DCE}\)
Do đó: \(\widehat{ACE}=\widehat{DCB}=60^0+\widehat{DCE}\)
Xét \(\Delta ACE\)và \(\Delta DCB\)có:
\(AC=DC\)( tính chất tam giác đều )
\(\widehat{ACE}=\widehat{DCB}\left(cmt\right)\)
\(CE=CB\)( tính chất tam giác đều )
=> \(\Delta ACE=\Delta DCB\left(c.g.c\right)\)
=> AE = BD ( 2 cạnh tương ứng )
b) Vì M là trung điểm của AE
=> AM = ME = 1/2 . AE ( 1 )
Vì N là trung điểm của BD
=> BD = DN = 1/2 . BD ( 2 )
AE = BD ( 3 )
Từ ( 1 ) ( 2 ) ( 3 ) => ME = BN
Xét \(\Delta CME\)và \(\Delta CNB\)có:
\(ME=BN\left(cmt\right)\)
\(\widehat{MEC}=\widehat{NBC}\left(cmt\right)\)
CE = CB ( tính chất tam giác đều )
=> \(\Delta CME=\Delta CNB\left(c.g.c\right)\)
c) Vì \(\Delta CME=\Delta CNB\left(cmt\right)\)
=> MC = CN ( 4 )
và \(\widehat{MCE}=\widehat{NCB}\)
Ta có: \(\widehat{MCN}=\widehat{MCE}+\widehat{NCE}\)
mà \(\widehat{MCE}=\widehat{NCB}\)
=> \(\widehat{MCN}=\widehat{NCB}+\widehat{NCE}=\widehat{BCE}\)
mà \(\widehat{BCE}=60^0\)( tính chất tam giác đều )
=> \(\widehat{MCN}=60^0\)( 5 )
Từ ( 4 ) và ( 5 ) => tam giác MNC là tam giác đều ( đpcm )
Cho đoạn thẳng AB và điểm C nằm giữa 2 điểm A và B.Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE . Gọi M và N lần lượt là trung điểm của AE và BD.CM tam giác MNC là tam giác đều
Cho đoạn thẳng AB và điểm C nằm giữa A và B. Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BEC. Gọi M, N lần lượt là trung điểm của AE và BD. Chứng minh :
a) AE=BD
b) Tam giác MCN là tam giác đều
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.