Tìm x , y thuộc Z biết
/ x - 20 / + / y + x -1 / nhỏ hơn hoặc bằng 0
Vì |x-20| và |y+x-1| đều >=0 => |x-20|+|y+x-1| >=0
Mà |x-20| + |y+x-1| < = 0 => |x-20| + |y+x-1| = 0 khi x-20 = 0 và y+x-1 = 0
<=> x=20 ; y = -19
Vậy ...........
k mk nha
Ta có:\(\left|x-20\right|+\left|y+x-1\right|\)< hoặc = 0
mà giá trị tuyệt đối của một số lớn hơn hoặc bằng 0
=> \(\left|x-20\right|+\left|y+x-1\right|=0\)
Vậy \(x-20=0\)
\(20+0=x\)
\(x=20\)
và \(y+x-1=0\)thay x = 20, ta có:
\(y+20-1=0\)
\(y=0-20+1\)
\(y=-20+1\)
\(y=-19\)
Vậy \(x=20;y=-19\)
Tìm x,y thuộc Z biết:
a) /x-1/+/y-3/ nhỏ hơn hoặc bằng 0
b) /x-2/+y2-2y+1 nhỏ hơn hoặc bằng 0
Cho /x/ nhỏ hơn hoặc bằng 3; /y/ nhỏ hơn hoặc bằng 5 với x,y thuộc Z. Biết x-y=2. Tìm x và y
Tìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
Giúp mk với mn ơi
Tìm x,y thuộc z,biết:
a) 1<|x-2|<4
b)|x+45-40|+|y+10-11| nhỏ hơn hoặc bằng 0
Cho 3 số x;y;z thoả mãn x+y+z=0; -1 nhỏ hơn hoặc bằng x;y;z nhỏ hơn hoặc bằng 1
Tìm GTNN GTLN của P=x2008+y2010+z2012 (Ko biết gõ dấu nhỏ hơn hoặc bằng :()
Tìm x, y, z thuộc Q biết:
a)|x+13/7| + |x+2005/118| + |z-2006|=0.
b)|x-12/3| + |y+8/23| + |z+190/27| nhỏ hơn hoặc bằng 0.
b,
ta có: x-12/3 + y+8/23 + z+190/27 luôn lớn hơn 0 nên không thể nhỏ hơn 0
Để: |x-12/3| + |y+8/23| + |z+190/27| > 0
=> (+) x-12/3 = 0
=> x= 12/3
(+) y+8/23 = 0
=> y = -8/23
(+) z+190/27 = 0
=> z = -190/27
Vậy x = 12/3; y = -8/23; z = -190/27
k giúp mình
làm ơn
câu a sai đề thì phải, bạn chữa lại rồi mình làm
sai đề thật rồi đấy
ìm x,y,z thuộc Q:
a)|x+9/2|+|y+4/3|+|z+7/2| nhỏ hơn hoặc bằng 0
b)|x+3/4|+|y-2/5|+|z+1/2| nhỏ hơn hoặc bằng 0
c) |x+19/5|+|y+1890/1975|+|z-2004|=0
d) |x+3/4|+|y-1/5|+|x+y+z|=0
a,
\(\left|x+\dfrac{9}{2}\right|\ge0\forall x\\ \left|y+\dfrac{4}{3}\right|\ge0\forall y\\ \left|z+\dfrac{7}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{9}{2}\right|+\left|y+\dfrac{4}{3}\right|+\left|z+\dfrac{7}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{9}{2}\right|=0\\\left|y+\dfrac{4}{3}\right|=0\\\left|z+\dfrac{7}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{9}{2}=0\\y+\dfrac{4}{3}=0\\z+\dfrac{7}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{2}\\y=\dfrac{-4}{3}\\z=\dfrac{-7}{2}\end{matrix}\right.\)
Vậy \(x=\dfrac{-9}{2};y=\dfrac{-4}{3};z=\dfrac{-7}{2}\)
d,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{1}{5}\right|\ge0\forall y\\ \left|x+y+z\right|\ge0\forall x,y,z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{1}{5}\right|+\left|x+y+z\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{1}{5}\right|=0\\\left|x+y+z\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{1}{5}=0\\x+y+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\x+y+z=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-3}{4}+\dfrac{1}{5}+z=0\end{matrix}\right.\\\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\\dfrac{-11}{20}+z=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{1}{5}\\z=\dfrac{11}{20}\end{matrix}\right.\)
b,
\(\left|x+\dfrac{3}{4}\right|\ge0\forall x\\ \left|y-\dfrac{2}{5}\right|\ge0\forall y\\ \left|z+\dfrac{1}{2}\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\ge0\forall x,y,z\\ \)
Mà \(\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|\le0\\ \Rightarrow\left|x+\dfrac{3}{4}\right|+\left|y-\dfrac{2}{5}\right|+\left|z+\dfrac{1}{2}\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{3}{4}\right|=0\\\left|y-\dfrac{2}{5}\right|=0\\\left|z+\dfrac{1}{2}\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{3}{4}=0\\y-\dfrac{2}{5}=0\\z+\dfrac{1}{2}=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-3}{4}\\y=\dfrac{2}{5}\\z=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy ...
c,
\(\left|x+\dfrac{19}{5}\right|\ge0\forall x\\ \left|y+\dfrac{1890}{1975}\right|\ge0\forall y\\ \left|z-2004\right|\ge0\forall z\\ \Rightarrow\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|\ge0\forall x,y,z\)
Mà
\(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\\ \Rightarrow\left\{{}\begin{matrix}\left|x+\dfrac{19}{5}\right|=0\\\left|y+\dfrac{1890}{1975}\right|=0\\\left|z-2004\right|=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\\ \Rightarrow\left\{{}\begin{matrix}x=\dfrac{-19}{5}\\y=\dfrac{-1890}{1975}=\dfrac{-378}{395}\\z=2004\end{matrix}\right. \)
Vậy ...
Tìm x,y€ Z biết |x-1|+|x-y+5| nhỏ hơn hoặc bằng 0
Vì |x-1| và |x-y+5| lớn hơn hoặc bằng 0 nên |x-1|+|x-y+5|=0
Suy ra x-1=0 => x=0+1 => x=1
Với x=1 ta có : 1-y+5=0 => 1-y=0-5 => 1-y=-5 => y=1--5 => y=-6
Vậy x=1 và y=-6
ta có |x-1|+|x-y+5|=0 vì nếu |x-1|+|x-y+5|<0 thì x,y thuộc tập hợp rỗng
suy ra |x-1|=0
|x-y+5|=0
suy ra x-1=0 và x-y+5=0
suy ra x=0+1=1
suy ra 1-y+5=0
bạn sẽ tự tìm y chứ