Thực hiện phép tính: A= ( 1- 1/1+2) * (1-1/1+2+3)* ....*(1-1/1+2+3+.....+2006)
thực hiện phép tính
A=(1-1/1+2) (1-1/1+2+3)... (1-1/1+2+3+...+2006)
Thực hiện phép tính
A = (1-1/1+2)×(1-1/1+2+3)×...×(1-1/1+2+3+...+2006)
A=(1-1/1+2)(1-1/1+2+3)...(1-1/1+2+3+...+2006)
A=(1-1/2.1+2/2)(1-1/1/3.(3+1)/2)...(1-1/2006.(2006+1/2)
A=(1-1/3).(1-1/6).(1-1/10)...(1-1/1008.2007)
A=2/3.5/6.9/10...2013020/2013021
A=4/6.10/11.18/20...4026040/4026042
A=1.4/2.3.2.5/3.4.3.6/4.5 ... 2005.2008/2006.2007
Mấy bạn ơi!Bài này cô mik giải ở lớp ròi nhá,mn cứ yên tâm chép,tuy trả lời muộn nhưng mong mn thông cảm vs cả bài ko đc đẹp lắm!Trân trọng.
(tiếp)A=1.2.3.4.5.6/2.3.4.5.6.7 ... 2005/2006.4.5.6 ... 2008/3.4.5 ... 2007
A=1/2006 .2008/3=1004/3009
xin lỗi mik vt thiếu.Mọi người chép nốt nha.=)))
Thực hiện phép tính :B=(1-1/1+2)x(1-1/1+2+3)x(1-1/1+2+3+4)x...x(1-1/1+2+3+4+...+2006)
Câu hỏi của Best Friend Forever - Toán lớp 7 - Học toán với OnlineMath
Thực hiện phép tính :
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).\left(1-\frac{1}{1+2+3+.........+2006}\right)\)
thực hiện phép tính :
\(A=\left(1-\frac{1}{1+2}\right).\left(1-\frac{1}{1+2+3}\right).............\left(1-\frac{1}{1+2+3+....+2006}\right)\)
Thực hiện phép tính
\(A=\left(1-\frac{1}{1+2}\right)\cdot\left(1-\frac{1}{1+2+3}\right)\cdot\cdot\cdot\cdot\left(1-\frac{1}{1+2+3+..+2006}\right)\)
Thực hiện phép tính
\(A=\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)\left(1-\frac{1}{1+2+3+4}\right)...\left(1-\frac{1}{1+2+3+.+2006}\right)\)
\(A=(1-\frac{1}{1+2})(1-\frac{1}{1+2+3})(1-\frac{1}{1+2+3+4})...(1-\frac{1}{1+2+3+...+2006})\)
\(A=(1-\frac{1}{3})(1-\frac{1}{6})(1-\frac{1}{10})...(1-\frac{1}{2013021})\)
\(A=\frac{2}{3}\cdot\frac{5}{6}\cdot\frac{9}{10}....\frac{2013020}{2013021}\)
Sorry bạn máy tính mình có chút vấn đề để mk làm tiếp :
\(A=\frac{4}{6}\cdot\frac{10}{12}\cdot\frac{18}{20}....\cdot\frac{4026040}{4026042}\)
\(A=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot\frac{3\cdot6}{4\cdot5}\cdot...\cdot\frac{2005\cdot2008}{2006\cdot2007}\)
\(A=\frac{1\cdot2\cdot3\cdot...\cdot2005}{2\cdot3\cdot4\cdot...\cdot2006}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2008}{3\cdot4\cdot5\cdot...\cdot2007}\)
\(A=\frac{1}{2006}\cdot\frac{2008}{3}=\frac{1004}{3009}\)
P/S : Hoq chắc :>
Thức hiện phép tính: A= ( 1- 1/1+2) * (1-1/1+2+3)* ....*(1-1/1+2+3+.....+2006)
<=> A = \(\frac{0}{1+2}+\frac{0}{1+2+3}+....+\frac{0}{1+2+3+...+2006}\)
=> A = 0
thực hiện phép tính
A=(\(1-\frac{1}{1+2}\))x(\(1-\frac{1}{1+2+3}\))x.....x(\(1-\frac{1}{1+2+3+....+2006}\)