CMR: 2 số nguyên liên tiếp ko chia hết cho 2
1.CMR tích của 3 số nguyên liên tiếp chia hết cho 6
2.CMR tích của 4 số nguyên liên tiếp chia hết cho 8
1. Ta có:1x2x3=6 chia hết cho 6
2x3x4 chia hết cho 6...
Vì vậy có thể CMR liên tiếp chia hết cho 6
2: Cũng như vậy
nên tích chia hết cho 4*2=8
tk mình nha
1. Vì trong 3 số nguyên liên tiếp luôn có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2 nên tích của 3 số nguyên liên tiếp luôn chia hết cho 3 x 2 = 6
2. Vì trong 4 số nguyên liên tiếp luôn có 2 số chia hết cho 2. Mà trong 2 số chia hết cho 2 thì 1 trong số chúng sẽ chia hết cho 4 nên tích của 2 số này luôn chia hết cho 8. Hay nói cách khác, tích của 4 số nguyên liên tiếp luôn chia hết cho 8
CMR: Tổng 4 số nguyên liên tiếp ko chia hết cho 4
Gọi 4 số đó là : a;a+1;a+2;a+3
Theo đầu bài ta có :
a+a+1+a+2+a+3 không chia hết cho 4
=> 4.a+(1+2+3) không chia hết cho 4
=> 4.a+6 không chia hết cho 4
Ta có :
4.a chia hết cho 4
6 không chia hết cho 4
=> 4.a+6 không chia hết cho 4
hay a+a+1+a+2+a+3 không chia hết cho 4
Vậy tổng của 4 số nguyên liên tiếp khong chia hết cho 4
gọi 4 số nguyên liên tiếp đó là a; a+1; a+2; a+3( a thuộc Z)
tổng là: a+a+1+a+2+a+3=4a+6
vì 4a chia hết cho 4 và 6 ko chia hết cho 4=>4a+6 ko chia hết cho 4=>a+a+1+a+2+a+3 ko chia hết cho 4=>tổng 4 số nguyên liên tiếp ko chia hết cho 4(đpcm)
cmr
tổng 3 số nguyên lien tiếp chia hết cho 3
tổng 5 số liên tiếp chia hết cho 5
trong 2k+1 nguyên liên tiếp chia hết cho 2k +1
a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2
ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3
vì 3a chia hết cho3 , 3 chia hết cho 3
suy ra ba số tự nhiên liên tiếp chia hết cho 3
b,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4
ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia
hết cho 5
vì 5a chia hết cho 5 ,10 chia hết cho 5
suy ra năm số tự nhiên lien tiếp chia hết cho5
Vì 2k+1 là số lể nên trung bình cộng dãy đó là số nguyên nên tổng 2k+1 số nguyên liên tiếp =trung bình cộng 2k+1 số đó nhân 2k+1
mà 2k+1 chia hết cho 2k+1 nên tích đó chia hết cho 2k+1⇒⇒tổng 2k+1 số nguyên đầu tiên chia hết cho 2k+1
\(CMR:\)
a,Trong hai số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 2
b,Trong ba số nguyên liên tiếp có 1 và chỉ 1 số chia hết cho 3
c,Tổng của 3 số nguyên liên tiếp chia hết cho 3
d,Tổng của 5 số nguyên liên tiếp chia hết cho 5
e,Tổng của n số nguyên lẻ liên tiếp chia hết cho n
C)gọi 3 số nguyên liên tiếp lần lượt là a, a+1 ,a+2
ta có:
a+(a+1)+(a+2)
=3a+3
=3(a+1) => chia hết cho 3
d) Gọi 5 số nguyên liên tiếp ần lượt là a, a+1, a+2, a+3, a+4
Ta có: a + a+1 + a+2 +a+3 +a+4
=5a +10
=5(a+2) => chi hết cho 5
a/CMR tích của 2 số tự nhiên liên tiếp chia hết cho 2
b/CMR tích của 3 số tự nhiên liên tiếp chia hết cho 6
c/CMR tích của 4 số tự nhiên liên tiếp chia hết cho 24
d/CMR tích của 5 số tự nhiên liên tiếp chia hết cho 120
đâu phải tích của 2 số đều chia hết cho 2 đâu
sao tích 2 số tự nhiên lại chia hết cho 2 . VD 3*5 =15 đâu chia hết cho 2. đúng ra phải là 2 số tự nhiên liên tiếp chứ!!!
Chứng tỏ rằng:
a,Tích của ba số nguyên liên tiếp chia hết cho 3
b,Tích của năm số nguyên liên tiếp chia hết cho 5
c,Tích của bốn số nguyên liên tiếp ko chia hết cho 4
a)Gọi ba số nguyên liên tiếp là a, a+1, a+2
ta có cấc+a+1+a+2=3a+3
vì 3a chia hết cho 3
3 chia hết cho 3
nên tổng của 3 số nguyên liên tiếp thì chia hết cho 3
b)Gọi 5 số nguyên liên tiếp là a,a+1,a+2.a+3.a+4
ta có:a+a+1+a+2+a+3+a+4=10a+5 chia hết cho 5
chúc bạn học tốt !!!
CMR:
a) Tổng ba số chẵn liên tiếp chia hết cho 6
b) Tổng của ba số lẻ liên tiếp ko chia hết cho 6
c) Tích của hai số chẵn liên tiếp chia hết cho 8
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
Chứng minh rằng:
a, tổng của ba số chẵn liên tiếp thì chia hết cho 6.
b, tổng của ba số lẻ liên tiếp không chia hết cho 6.
a) Gọi ba số chẵn liên tiếp đó là 2n ; 2n + 2 ; 2n + 4
Tổng của ba số chẵn liên tiếp = 2n + 2n + 2 + 2n + 4 = 6n + 6
\(\hept{\begin{cases}6n⋮6\\6⋮6\end{cases}\Rightarrow}6n+6⋮6\)hay tổng của ba số chẵn liên tiếp chia hết cho 6 ( đpcm )
b) Gọi ba số lẻ liên tiếp đó là 2n + 1 ; 2n + 3 ; 2n + 5
Tổng của ba số lẻ liên tiếp = 2n + 1 + 2n + 3 + 2n + 5 = 6n + 9
\(\hept{\begin{cases}6n⋮6\\9⋮̸6\end{cases}\Rightarrow}6n+9⋮̸6\)hay tổng của ba số lẻ liên tiếp không chia hết cho 6 ( đpcm )
c) Gọi hai số chẵn liên tiếp đó là 2n và 2n + 2
Tích của hai số = 2n(2n + 2) = 4n2 + 4n = 4n( n + 1 )
n(n + 1) là tích của hai số liền nhau => Chia hết cho 2
=> 4n(n + 1) chia hết cho 8 hay tích của hai số chẵn liên tiếp chia hết cho 8 ( đpcm )
Câu 1: CMR: 11a+ 2b chia hết cho 19 <=> ( 18a+ 3b) chia hết cho 19
Câu 2: CMR: Tích 5 số nguyên liên tiếp chia hết cho 120.
Câu 3: Cho p, p+8 là số nguyên tố (p>3). Hỏi p+ 100 là số nguyên tố hay hợp số.
cmr: tổng của 3 số chẵn liên tiếp chia hết cho 6
tổng của 3 số lẻ liên tiếp ko chia hết cho 6
câu 1: chứng minh rằng tổng của 3 số chẵn không chia hết cho 6
gọi 3 số đó là a; a + 2; a + 4 (với a chẵn và a thuộc N)
=> a + (a + 2) + (a + 4) = (a + a + a) + (2 + 4) = 3a + 6 mà 6 chia hết cho 6
=> tổng của 3 số chẵn liên tiếp chia hết cho 6
=> điều cần chứng minh
câu 2: chứng minh rằng tổng của 3 số lẻ liên tiếp không chia hết cho 6
gọi 3 số đó là a + 1; a + 3; a + 5 (a chẵn và a thuộc N)
=> a + 1 + a + 3 + a + 5 = (a + a + a) + (1 + 3 + 5) = 3a + 9 mà 9 không chia hết cho 6
=> tổng của 3 số lẻ liên tiếp không chia hết cho 6
=> điều cần chứng minh
a. Theo de bai ta co:
2n + ( 2n + 2 ) + ( 2n + 4 )
= 3(2n) + ( 2 + 4 )
= 3(2n) + 6
Ma 6 chia het cho 6 => 3(2n) + 6 chia het cho 6
Vay tong 3 so chan lien tiep khong chia het cho 6
b. Theo de bai ta co:
(2n+1)+ (2n+3)+ (2n +5)
= 3(2n)+ ( 1+3+5)
= 3(2n) + 9
Ma 9 khong chia het cho 6 => 3(2n) + 9 khong chia het cho 6
Vay tong cua 3 so le lien tiep khong chia het cho 6